

#1 Date _____

Three thousand four hundred eighty-five (3.1) [← check Level 3 Lesson 1 if you need a review](#)

$$3000 + 400 + 80 + 5$$

All about the number 3,485:

1. How many ones are in this number? _____
2. How many hundreds are in this number? _____
3. How many thousands are in this number? _____
4. How many tens are in this number? _____
5. Which number is in the hundreds place? _____
6. Which number is in the thousands place? _____
7. Which number is in the ones place? _____

Trace the existing numbers, fill in the missing numbers and color the squares with EVEN numbers yellow. (2.4)

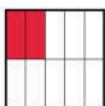
	510	511	512						

Complete each number sequence:

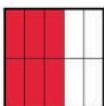
53, 54, 55, _____, _____, _____, _____, _____, _____, _____, _____

6, 9, 12, _____, _____, _____, _____, _____, _____, _____, _____, _____

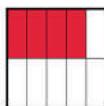
36, 33, 30, _____, _____, _____, _____, _____, _____, _____, _____, _____

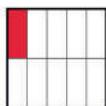

30, 28, 26, _____, _____, _____, _____, _____, _____, _____, _____, _____

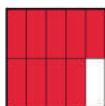
84, 77, 70, _____, _____, _____, _____, _____, _____, _____, _____, _____

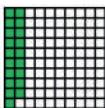

7, 14, 21, _____, _____, _____, _____, _____, _____, _____, _____, _____

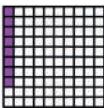
#2 Date _____

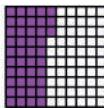

Identify each shaded part using a fraction, a decimal and words.

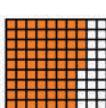

$\frac{2}{10}$
0.2
two tenths

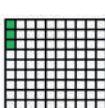


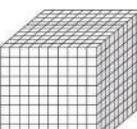


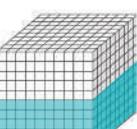


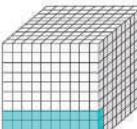


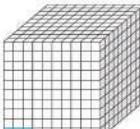

$\frac{19}{100}$
0.19
nineteen
hundredths

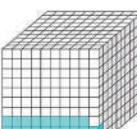

0.08








$\frac{5}{1000}$
0.005
five
thousandths



0.003

0.029

Name each number out loud, then use your place value chart to help you write the value of the 2 in each number:

51324

20

5132.4

513.24

2

51.324

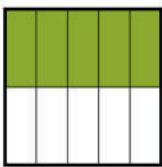
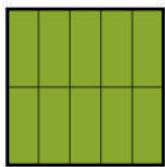
21354

92873

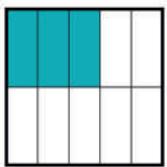
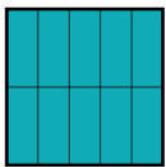
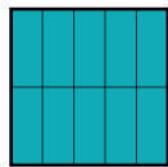
20000
2

9287.3

928.73



92.873

93.872




Write each fraction as a:

mixed number: 1 $\frac{5}{10}$

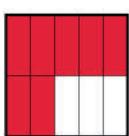
decimal: 1.5

word form: one and five tenths

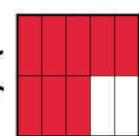
mixed number: 1 $\frac{3}{10}$

decimal: 1.3

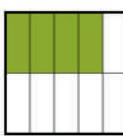
word form: one and three tenths

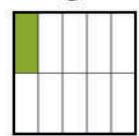

What is the sum of two hundred thirty-five and seven hundred sixty-five?

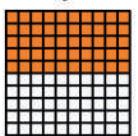
Your piano recital had 10 rows, each with 14 seats. How many seats were there?

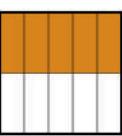

You need to finish the remaining 175 pages of your library book before it's due in 7 days. How many pages should you read each day?

Uh, oh. You and three buddies broke the neighbor's window with a baseball. It will cost \$624 to replace. How much should each of you pay?

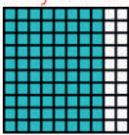

Name the decimals then compare them using the comparison symbols (<, >, =)


0.7

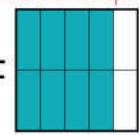

0.8


—

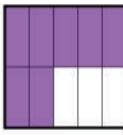
—

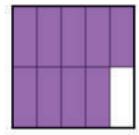


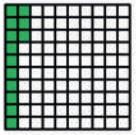
—

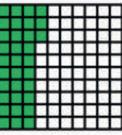


—

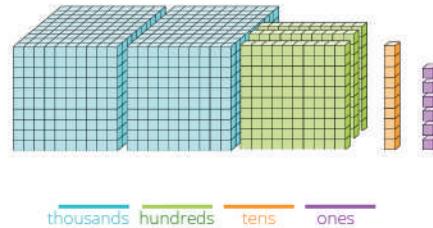
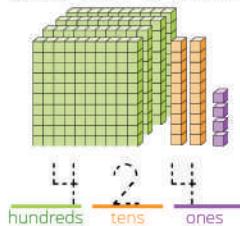

Why are these values equal?


0.80

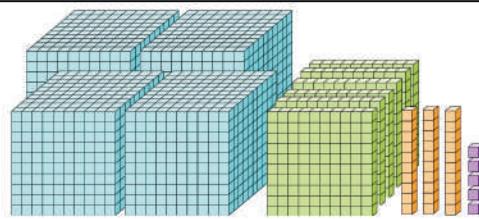
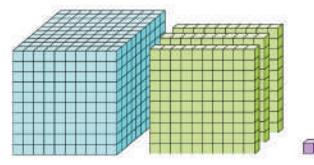

0.8


—

—



—

—



#3 Date _____

What numbers do these base ten blocks represent? Write each in expanded form and word form.

$$(4 \times 100) + (2 \times 10) + (4 \times 1)$$

four hundred twenty-four

Use your place value chart to fill in the blanks in this table.

Word Form	Expanded Form	Standard Form
Twelve thousand, six hundred two	$(1 \times 10,000) + (2 \times 1,000) + (6 \times 100) + (2 \times 1)$	12,602
Nine million, thirteen thousand		9,013,000
		10,015
	$(5 \times 10,000) + (9 \times 1,000)$	
Forty-three million, fifty thousand, nineteen		

A chocolate factory makes the following amounts of each flavor, based on popularity. Use the tables below to answer the questions. (3.24) Check Level 3 lesson 24 if you need a review

Flavor	Amount
Raspberry	102,624
Coconut	98,128
Hazelnut	154,042
Vanilla	63,100
Mint	126,200

Which flavor is the most popular? _____

Which flavor is the least popular? _____

Which flavor is twice as popular as vanilla? _____

How many chocolates does the factory make altogether?

How many more hazelnut chocolates than raspberry chocolates does the factory make? _____

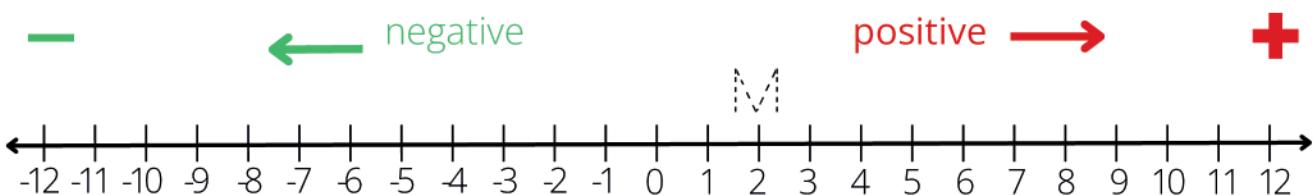
Put these numbers in order from smallest to largest. (3.2)

475	547	745	457	_____	smallest	_____	_____	largest
-----	-----	-----	-----	-------	----------	-------	-------	---------

980	890	809	908	_____	smallest	_____	_____	largest
-----	-----	-----	-----	-------	----------	-------	-------	---------

132	123	312	213	231	_____	smallest	_____	_____	_____	largest
-----	-----	-----	-----	-----	-------	----------	-------	-------	-------	---------

561	165	156	615	_____	smallest	_____	_____	largest
-----	-----	-----	-----	-------	----------	-------	-------	---------


Write operators (\times , \div , $+$, $-$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (3.83)

6	\div	2	\times	3	$=$	1
\square						
5	\square	2	\square	4	$=$	3
\square						
1	\square	1	\square	2	$=$	4
$=$	$=$	$=$	$=$	$=$	$=$	$=$
2	\square	4	\square	6	$=$	12

5	\times	2	$-$	6	$=$	4
\square						
4	\square	1	\square	2	$=$	3
\square						
0	\square	2	\square	1	$=$	1
$=$	$=$	$=$	$=$	$=$	$=$	$=$
5	\square	1	\square	3	$=$	1

7	\times	1	$-$	1	$=$	6
\square						
3	\square	1	\square	1	$=$	3
\square						
2	\square	1	\square	1	$=$	2
$=$	$=$	$=$	$=$	$=$	$=$	$=$
1	\square	3	\square	3	$=$	9

#4 Date _____

Write each letter at the given point on the number line:

M at 2
O at 10
C at -5
A at 3
P at -10

E at 11
E at -9
T at 4
O at -4
R at 12

U at -11
O at -3
E at -9
T at 4
O at -4

R at 12
U at -11
O at -3
H at 5
R at -8

D at 9
S at -12
L at -2

Use words to write $3\frac{7}{10}$ _____

Use words to write 3.7 _____

To which decimal number does each arrow point?

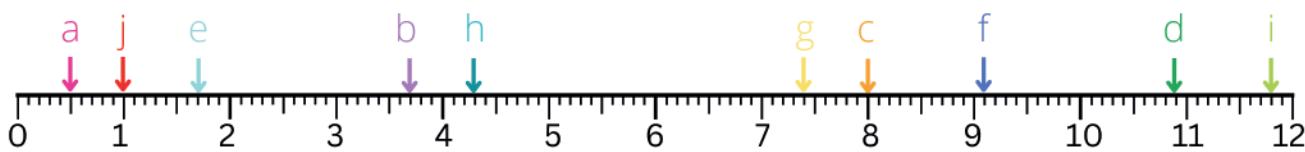
a 0.5

c _____

e _____

g _____

i _____


b _____

d _____

f _____

h _____

j _____

Draw arrows to each decimal number and label them with the number.

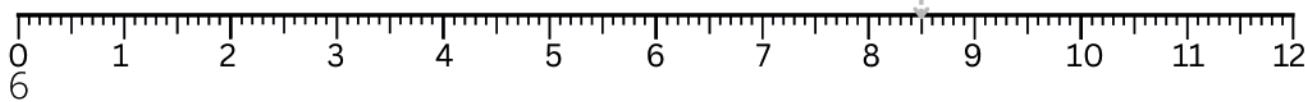
8.5

2.7

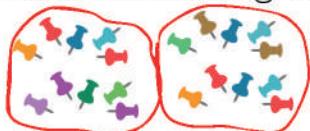
7.6

6.9

4.8


11.1

8.3


5.2

10.4

3.3

Draw circles to group the items, then complete the equations. (4.16)

divide 20 into 2 equal groups, how many are in each group?

$$\frac{20}{2} = 10$$

$$20 \div 2 =$$

$$2 \overline{)20}$$

What is 1/2 of 20?

$$\frac{20}{4} =$$

$$20 \div 4 =$$

$$4 \overline{)20}$$

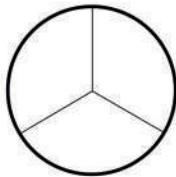
What is 1/4 of 20?

$$\frac{20}{5} =$$

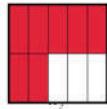
$$20 \div 5 =$$

$$5 \overline{)20}$$

What is 1/5 of 20?

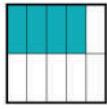


What is twice the quantity of six and three?

quantity means parentheses $(6 + 3)$

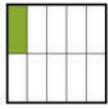

$$2(6+3) =$$

What is one fifth of thirty?

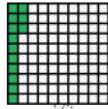
Shade circles to show that $3 \frac{1}{3}$ equals $\frac{10}{3}$.



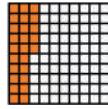
Identify each shaded part using a fraction, a decimal and words. (4.34)


$$\frac{7}{10}$$

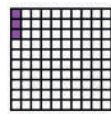
seven tenths


$$\frac{3}{10}$$

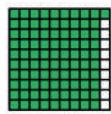
three tenths


$$\frac{1}{10}$$

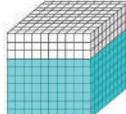
one tenth


$$\frac{13}{100}$$

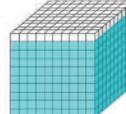
thirteen hundredths


$$\frac{7}{100}$$

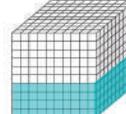
seven hundredths


$$\frac{7}{1000}$$

seven thousandths


$$\frac{7}{1000}$$

seven thousandths


$$\frac{7}{1000}$$

seven thousandths

$$\frac{7}{1000}$$

seven thousandths

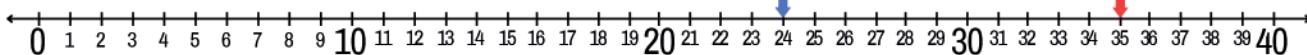
$$\frac{7}{1000}$$

seven thousandths

#5 Date _____

Rounding Steps:

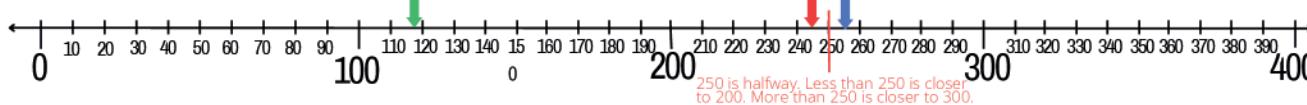
1. Circle the digit in the place to which you are rounding.
2. If the next digit to the right is 4 or less let your circled digit rest.
- If it's 5 or more, let your circled digit soar one number higher.
3. Make all digits to the right of the circled digit zeros.


Four or less? Let it rest.
Five or more? Let it soar.

Round to the nearest TEN:

35 40
Five or more? Let the 5 soar – round UP to 40.

24 20
Four or less? Let the 2 rest.


Round to the nearest HUNDRED:

245 200
Four or less? Let the 2 rest.

119 100
Four or less? Let the 1 rest.

254 300
Five or more? Let the 2 soar (round UP to 3).

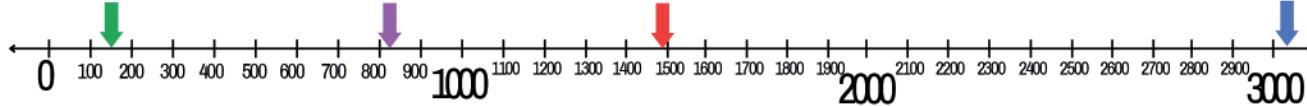
189 200

Round to the nearest THOUSAND:

1499 1000
Four or less? Let the 1 rest.

1586 1000

0146 0
Four or less? Let the 0 rest.


1433 1000

3050 3000
Four or less? Let the 3 rest.

2059 2000

0817 1000
Five or more? Let the 0 soar (round UP to 1).

1649 1000

1 5 0 1
thousands hundreds tens ones

9 4 7
thousands hundreds tens ones

Round to the nearest TEN _____

Round to the nearest TEN _____

Round to the nearest HUNDRED _____

Round to the nearest HUNDRED _____

Round to the nearest THOUSAND _____

Round to the nearest THOUSAND _____

3 2 1 7
thousands hundreds tens ones

2 1 0 3
thousands hundreds tens ones

Round to the nearest TEN _____

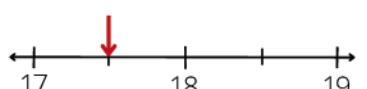
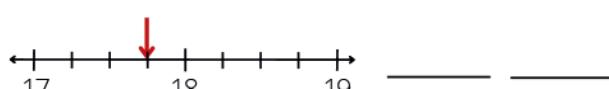
Round to the nearest TEN _____

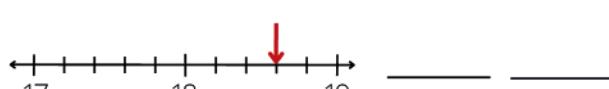
Round to the nearest HUNDRED _____

Round to the nearest HUNDRED _____

Round to the nearest THOUSAND _____

Round to the nearest THOUSAND _____



To which mixed number does each arrow point? Round to the nearest whole number.


18 $\frac{7}{8}$ 19

_____ _____

_____ _____

_____ _____

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations. (PEMDAS) (3.83)

= 5

= 7

= 8

= 12

$$45 - \text{fox} \times \text{lion} = \text{lion}$$

$$\text{panda} \times \text{lion} - \text{turtle} \times \text{fox} = 4$$

$$\text{lion} + \text{turtle} + \text{fox} + \text{panda} = 33$$

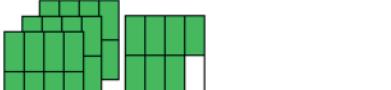
$$(\text{fox} + \text{turtle}) \div \text{lion} = 3$$

$$\text{turtle} - \text{panda} \div \text{panda} = 6$$

$$\text{fox} \times \text{turtle} = \text{lion} \times \text{panda}$$

Name these fractions as mixed numbers and improper fractions. (4.25)

1
2 3
2


_____ _____

_____ _____

_____ _____

_____ _____

_____ _____

_____ _____

_____ _____

_____ _____

#6 Date _____

1.315
 hundreds tens ones tenths hundredths thousandths

One and three hundred fifteen thousandths

Round to the nearest ONE _____

Round to the nearest TENTH _____

Round to the nearest HUNDREDTH _____

21.581
 hundreds tens ones tenths hundredths thousandths

Twenty-one and five hundred eighty-one thousandths

Round to the nearest ONE _____

Round to the nearest TENTH _____

Round to the nearest HUNDREDTH _____

13.456
 hundreds tens ones tenths hundredths thousandths

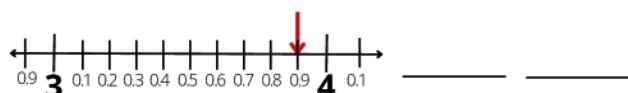
Thirteen and four hundred fifty-six thousandths

Round to the nearest ONE _____

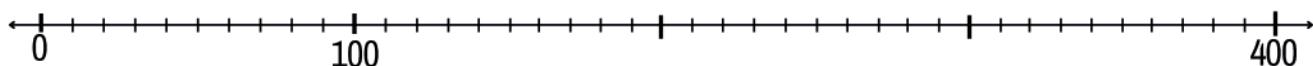
Round to the nearest TENTH _____

Round to the nearest HUNDREDTH _____

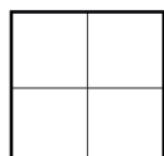
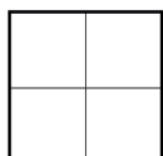
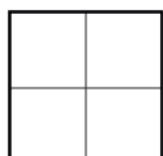
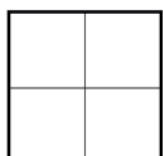
9.706
 hundreds tens ones tenths hundredths thousandths


Nine and seven hundred six thousandths

Round to the nearest ONE _____


Round to the nearest TENTH _____

Round to the nearest HUNDREDTH _____





To which decimal does each arrow point? Round to the nearest whole number.

Draw a dot at 300 and label it.

Shade these squares to show that $4\frac{1}{2}$ equals $\frac{18}{4}$. (4.25)

Write the missing operator (+, -, x, ÷) in empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (4.30)

$$6^2 \boxed{-} 4 \boxed{-} 4 \boxed{-} 10 = 10$$

$$15 \boxed{+} 5 \boxed{-} 20 \boxed{-} 2 = 10$$

$$2 \boxed{+} 4 \boxed{-} 2 \boxed{-} 8 = 3$$

$$5 \boxed{-} 3 \boxed{-} 30 \boxed{-} 2 = 0$$

$$3 \boxed{-} 6 \boxed{-} 9 \boxed{-} 2 = 0$$

$$5 \boxed{-} 4 \boxed{-} 5 \boxed{-} 2 = 10$$

Find the products. (4.59)

$$\begin{array}{r} \cancel{2}04 \\ \times \cancel{1}8 \\ \hline 1632 \\ +2040 \\ \hline 3672 \end{array} \quad \begin{array}{r} 8 \times 204 \\ 10 \times 204 \end{array}$$

$$\begin{array}{r} 154 \\ \times 21 \\ \hline \end{array}$$

$$\begin{array}{r} 119 \\ \times 32 \\ \hline \end{array}$$

$$\begin{array}{r} 143 \\ \times 28 \\ \hline \end{array}$$

$$\begin{array}{r} 211 \\ \times 24 \\ \hline \end{array}$$

Find the quotients. (4.60)

$$\begin{array}{r} \boxed{1}7 \\ 13 \overline{)221} \\ -13 \\ \hline \boxed{9} \\ -9 \\ \hline 0 \end{array}$$

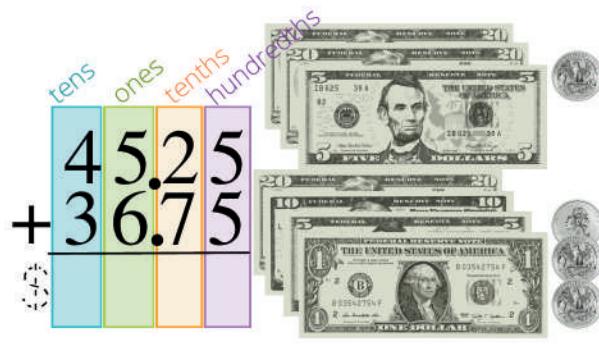
$$\begin{array}{r} \boxed{2}5 \\ 19 \overline{)475} \\ -19 \\ \hline \boxed{2}6 \\ -19 \\ \hline 7 \end{array}$$

$$\begin{array}{r} \boxed{3}0 \\ 16 \overline{)496} \\ -48 \\ \hline \boxed{1}6 \\ -16 \\ \hline 0 \end{array}$$

$$\begin{array}{r} \boxed{2}8 \\ 18 \overline{)522} \\ -36 \\ \hline \boxed{1}6 \\ -16 \\ \hline 0 \end{array}$$

$$\begin{array}{r} \boxed{1}5 \\ 15 \overline{)225} \\ -15 \\ \hline \boxed{7}5 \\ -75 \\ \hline 0 \end{array}$$

$$\begin{array}{r} \boxed{2}7 \\ 21 \overline{)567} \\ -42 \\ \hline \boxed{1}47 \\ -147 \\ \hline 0 \end{array}$$


$$\begin{array}{r} \boxed{2}6 \\ 27 \overline{)729} \\ -54 \\ \hline \boxed{1}89 \\ -189 \\ \hline 0 \end{array}$$

$$\begin{array}{r} \boxed{3}4 \\ 23 \overline{)805} \\ -69 \\ \hline \boxed{1}15 \\ -115 \\ \hline 0 \end{array}$$

$$\begin{array}{r} \boxed{3}1 \\ 14 \overline{)434} \\ -42 \\ \hline \boxed{1}4 \\ -14 \\ \hline 0 \end{array}$$

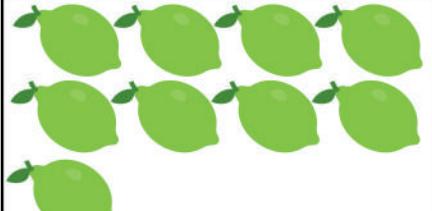
$$\begin{array}{r} \boxed{1}7 \\ 17 \overline{)272} \\ -17 \\ \hline \boxed{1}0 \\ -10 \\ \hline 0 \end{array}$$

#7 Date _____

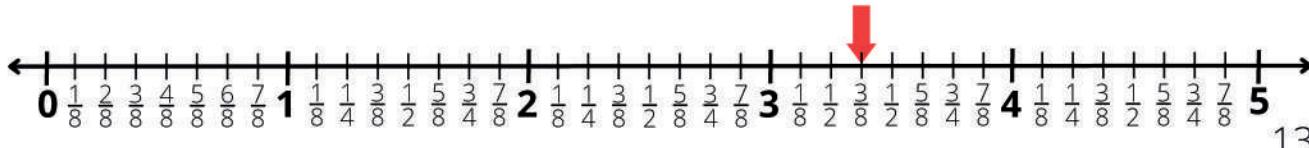
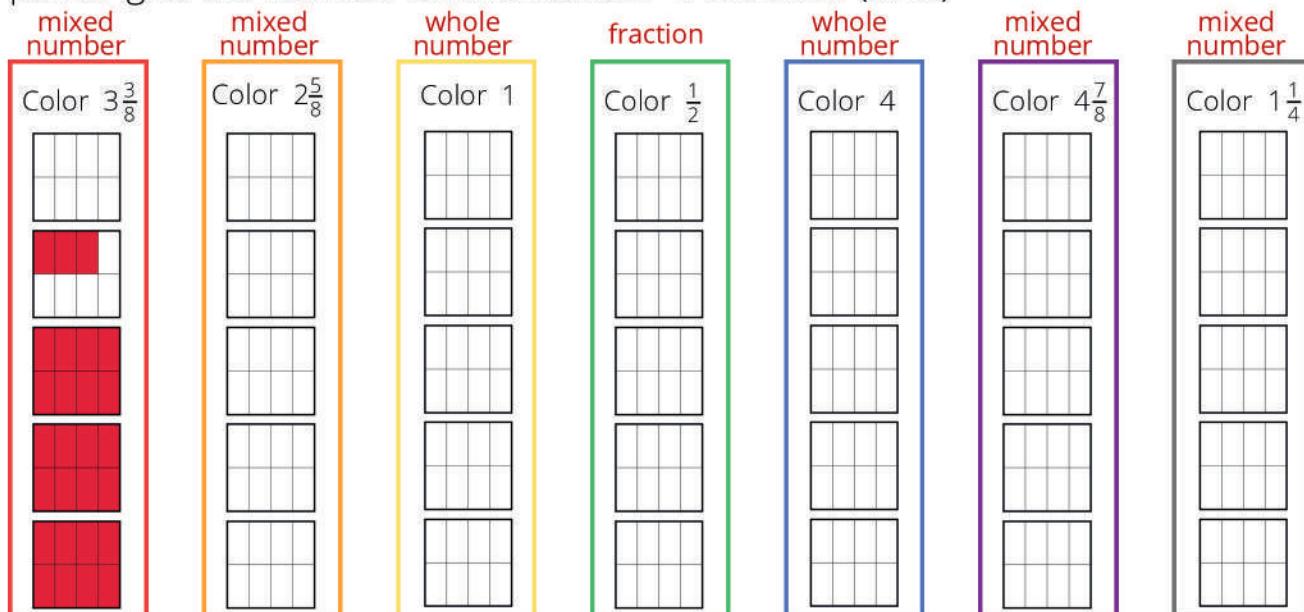
WORD PROBLEMS

What is five times the quantity of three plus two? $5(3+2)$

quantity means parentheses $(3+2)$


Four squared is how much more than the square root of 36?

Draw a line from each number to its type:



$1\frac{1}{4}$	$\frac{1}{2}$
3	$2\frac{1}{8}$
$\frac{7}{8}$	4
2	$\frac{25}{8}$
$3\frac{3}{8}$	$\frac{3}{4}$

mixed number
 whole number
 fraction
 improper fraction

Draw lines to divide each set into equal halves. If there is a leftover, circle it in red, then use a vertical line to cut it in half.

$6 \div 2 =$	$4 \div 2 =$	$5 \div 2 =$
$3 \div 2 =$	$8 \div 2 =$	$12 \div 2 =$
$9 \div 2 =$	$18 \div 2 =$	$11 \div 2 =$

Color the number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below. (3.16)

#8 Date _____

Find the sums and differences without regrouping.

$$\begin{array}{r} 42 \\ + 16 \\ \hline \end{array}$$

$$\begin{array}{r} 35 \\ + 24 \\ \hline \end{array}$$

$$\begin{array}{r} 21 \\ + 37 \\ \hline \end{array}$$

$$\begin{array}{r} 15 \\ + 44 \\ \hline \end{array}$$

$$\begin{array}{r} 33 \\ + 12 \\ \hline \end{array}$$

$$\begin{array}{r} 26 \\ - 14 \\ \hline \end{array}$$

$$\begin{array}{r} 38 \\ - 23 \\ \hline \end{array}$$

$$\begin{array}{r} 41 \\ - 20 \\ \hline \end{array}$$

$$\begin{array}{r} 19 \\ - 16 \\ \hline \end{array}$$

$$\begin{array}{r} 57 \\ - 24 \\ \hline \end{array}$$

Find the sums and differences with regrouping.

$$\begin{array}{r} 247 \\ + 163 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 185 \\ + 245 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 215 \\ + 95 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 1448 \\ + 585 \\ \hline \end{array}$$

thousands hundreds tens ones

$$\begin{array}{r} 1629 \\ + 2586 \\ \hline \end{array}$$

thousands hundreds tens ones

$$\begin{array}{r} 220 \\ - 193 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 185 \\ - 156 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 301 \\ - 178 \\ \hline \end{array}$$

hundreds tens ones

$$\begin{array}{r} 2510 \\ - 1633 \\ \hline \end{array}$$

thousands hundreds tens ones

$$\begin{array}{r} 1821 \\ - 1257 \\ \hline \end{array}$$

thousands hundreds tens ones

Find the missing PART and/or WHOLE in each addition fact family.

		9		
2		7		

		8		
	4			

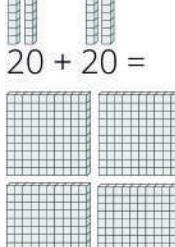
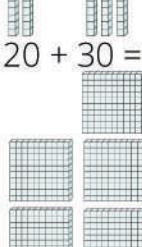
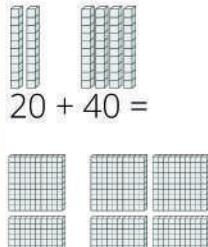
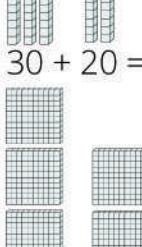
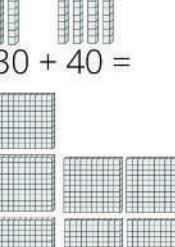
		6		
2	4			

		9		

		7		

		6		

Find the sums and differences. Line up the decimals!






$$142.3 - 98.57$$

$$37.94 + 12.37$$

$$72 - 29.01$$

$$\begin{array}{r} 142.30 \\ - 98.57 \\ \hline \end{array}$$

Find the sums. (2.10)

$2 + 2 =$ $20 + 20 =$ $200 + 200 =$ 	$2 + 3 =$ $20 + 30 =$ $200 + 300 =$ 	$2 + 4 =$ $20 + 40 =$ $200 + 400 =$ 	$3 + 2 =$ $30 + 20 =$ $300 + 200 =$ 	$3 + 4 =$ $30 + 40 =$ $300 + 400 =$
---	---	---	--	---

Find the sums. (2.10)

$$4 + 5 = \underline{\quad}$$

$$6 + 3 = \underline{\quad}$$

$$5 + 6 = \underline{\quad}$$

$$40 + 50 = \underline{\quad}$$

$$60 + 30 = \underline{\quad}$$

$$50 + 60 = \underline{\quad}$$

$$400 + 500 = \underline{\quad}$$

$$600 + 300 = \underline{\quad}$$

$$500 + 600 = \underline{\quad}$$

$$4000 + 5000 = \underline{\quad}$$

$$6000 + 3000 = \underline{\quad}$$

$$5000 + 6000 = \underline{\quad}$$

Trace the existing numbers, fill in the missing numbers and color the squares with EVEN numbers yellow. (2.4)

					1002			1005	

#9 Date _____

Find the missing numbers to complete each equation.

$$\begin{array}{r} 314 \\ + \boxed{} \\ \hline 395 \end{array}$$

$$\begin{array}{r} \boxed{} \\ + 112 \\ \hline 235 \end{array}$$

$$\begin{array}{r} 175 \\ + \boxed{} \\ \hline 343 \end{array}$$

$$\begin{array}{r} \boxed{} \\ + 218 \\ \hline 348 \end{array}$$

$$\begin{array}{r} 301 \\ + \boxed{} \\ \hline 419 \end{array}$$

$$\begin{array}{r} 65 \leftarrow \text{Whole} \\ - \boxed{} \leftarrow \text{Part} \\ \hline 28 \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} \boxed{} \leftarrow \text{Whole} \\ - 29 \leftarrow \text{Part} \\ \hline 102 \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} 140 \\ - \boxed{} \\ \hline 115 \end{array}$$

$$\begin{array}{r} \boxed{} \\ - 32 \\ \hline 127 \end{array}$$

$$\begin{array}{r} 224 \\ - \boxed{} \\ \hline 78 \end{array}$$

Rearrange the subtraction problems above if you need to.

$$\begin{array}{r} 65 \leftarrow \text{Whole} \\ - 28 \leftarrow \text{Part} \\ \hline \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} 102 \leftarrow \text{Part} \\ + 29 \leftarrow \text{Part} \\ \hline \leftarrow \text{Whole} \end{array}$$

MISSING

Find the value of X in each equation and write it in the box below.

$$\begin{array}{r} 114 \\ + X \\ \hline 228 \end{array}$$

$$\begin{array}{r} X \\ + 83 \\ \hline 189 \end{array}$$

$$\begin{array}{r} 106 \\ + X \\ \hline 158 \end{array}$$

$$\begin{array}{r} X \\ + 125 \\ \hline 236 \end{array}$$

$$\begin{array}{r} 571 \\ + X \\ \hline 300 \end{array}$$

$$X = \underline{\hspace{2cm}}$$

$$\begin{array}{r} 93 \leftarrow \text{Whole} \\ - X \leftarrow \text{Part} \\ \hline 16 \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} X \leftarrow \text{Whole} \\ - 29 \leftarrow \text{Part} \\ \hline 93 \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} 163 \\ - X \\ \hline 85 \end{array}$$

$$\begin{array}{r} X \\ - 144 \\ \hline 151 \end{array}$$

$$\begin{array}{r} 228 \\ - X \\ \hline 99 \end{array}$$

$$X = \underline{\hspace{2cm}}$$

Rearrange the subtraction problems above if you need to.

$$\begin{array}{r} 93 \leftarrow \text{Whole} \\ - 16 \leftarrow \text{Part} \\ \hline \leftarrow \text{Part} \end{array}$$

$$\begin{array}{r} 93 \leftarrow \text{Part} \\ + 29 \leftarrow \text{Part} \\ \hline \leftarrow \text{Whole} \end{array}$$

Draw a number line with whole numbers marked and numbered from 0 to 10. Then mark $\frac{1}{2}$ in between each whole number. Draw an arrow to $3\frac{1}{2}$.

Write these sentences using digits and operator symbols:

Forty-five is less than fifty-four

$$45 < 54$$

Twelve more than fifteen is twenty-seven

Seventeen, twice, is thirty-four

Ten, four times, is forty

Forty minus fourteen equals twenty-six

Two hundred twenty-one is greater than two hundred twelve

Trace then write each term, then draw a line to match each term to its definition. (3.59)

coefficient

• A letter or symbol that represents a number.

variable

• A number in front of a variable. It gets multiplied by the variable.

coefficient variable
 $5A = 20$

Math Rule:

When you have a VARIABLE and a COEFFICIENT together in a number sentence, they are multiplied together. You don't need a multiplication symbol.

Fill in the missing factors or products to complete each number sentence.

Find the value of the VARIABLE in each number sentence.

$$5 \times \boxed{} = 15$$

See? No multiplication symbol between the variable and the coefficient!

$$X = \underline{\hspace{2cm}}$$

$$3 \times \boxed{} = 6$$

$$3Y = 6$$

$$Y = \underline{\hspace{2cm}}$$

$$4 \times \boxed{} = 16$$

$$4Z = 16$$

$$Z = \underline{\hspace{2cm}}$$

$$7 \times \boxed{} = 21$$

$$7A = 21$$

$$A = \underline{\hspace{2cm}}$$

$$6 \times \boxed{} = 36$$

$$6B = 36$$

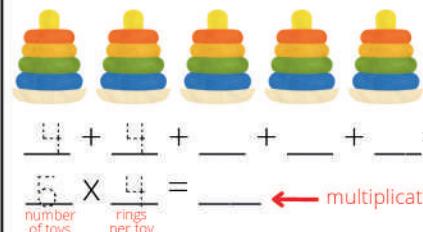
$$B = \underline{\hspace{2cm}}$$

Color the COEFFICIENTS red and the VARIABLES green in these number sentences.

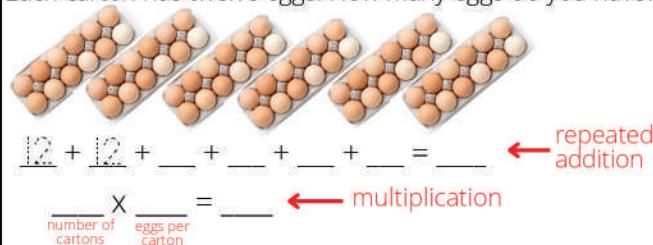
$$5\textcolor{red}{X} = 15$$

$$3\textcolor{green}{Y} = 6$$

$$4\textcolor{red}{Z} = 16$$


$$7\textcolor{red}{A} = 21$$

$$6\textcolor{green}{B} = 36$$


#10 Date _____

Write a number sentence for each box as repeated addition then multiplication.

Each toy has four rings. How many rings do you have?

Each carton has twelve eggs. How many eggs do you have?

Rewrite each repeated addition sentence as a multiplication equation.

$$7 + 7 + 7 \quad 7 \times 3 = 21$$

$$8 + 8 + 8 + 8 + 8 + 8 + 8 \quad \underline{\quad}$$

$$9 + 9 + 9 + 9 \quad \underline{\quad}$$

Your mom has seven hundred five dollars and seventy-nine cents. She buys a laptop for three hundred forty-five dollars and ninety-nine cents. How much money does she have left?

Find the products.

$$\begin{array}{r} 28 \\ \times 6 \\ \hline \end{array}$$

$$\begin{array}{r} 32 \\ \times 8 \\ \hline \end{array}$$

$$\begin{array}{r} 19 \\ \times 3 \\ \hline \end{array}$$

$$\begin{array}{r} 22 \\ \times 9 \\ \hline \end{array}$$

$$\begin{array}{r} 35 \\ \times 4 \\ \hline \end{array}$$

$$\begin{array}{r} 42 \\ \times 5 \\ \hline \end{array}$$

$$\begin{array}{r} 25 \\ \times 12 \\ \hline 50 \\ 250 \\ \hline 300 \end{array}$$

$$\begin{array}{r} 45 \\ \times 13 \\ \hline 345 \\ 1045 \\ \hline \end{array}$$

$$\begin{array}{r} 27 \\ \times 21 \\ \hline 27 \\ 54 \\ \hline 567 \end{array}$$

$$\begin{array}{r} 33 \\ \times 15 \\ \hline 15 \\ 66 \\ \hline 495 \end{array}$$

$$\begin{array}{r} 28 \\ \times 14 \\ \hline 14 \\ 56 \\ \hline 392 \end{array}$$

$$\begin{array}{r} 22 \\ \times 18 \\ \hline 18 \\ 44 \\ \hline 396 \end{array}$$

Draw circles to group the items, then complete the equations. (4.16)

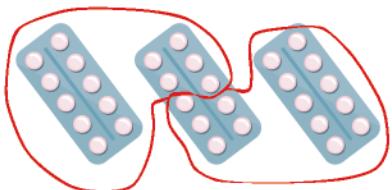
$$\frac{30}{10} =$$

$$30 \div 10 =$$

$$10 \overline{)30}$$

What is $1/10$ of 30?

What is $2/10$ of 30?


$$\frac{30}{5} =$$

$$30 \div 5 =$$

$$5 \overline{)30}$$

What is $1/5$ of 30?

What is $2/5$ of 30?

$$\frac{30}{2} =$$

$$30 \div 2 =$$

$$2 \overline{)30}$$

What is $1/2$ of 30? 15

Shade to show that $3 \frac{1}{6}$ equals $\frac{19}{6}$.

Shade to show that $3 \frac{2}{3}$ equals $\frac{11}{3}$.

Change mixed numbers to improper fractions.

The denominator of the improper fraction is the same as the denominator of the fractional part of the mixed number, because the PIECES are the same size.

To find the numerator of the improper fraction:

1. Multiply the denominator of the fraction by the whole number.

2. Add the numerator of the fraction.

$$3\frac{1}{6}$$

multiply add
 $6 \times 3 = 18$ $18 + 1 = 19$ $\frac{19}{6}$

$$4\frac{1}{6} = \underline{\hspace{2cm}}$$

$$2\frac{7}{8} = \underline{\hspace{2cm}}$$

$$1\frac{3}{4} = \underline{\hspace{2cm}}$$

$$4\frac{3}{5} = \underline{\hspace{2cm}}$$

$$5\frac{1}{2} = \underline{\hspace{2cm}}$$

$$3\frac{1}{3} = \underline{\hspace{2cm}}$$

$$2\frac{2}{3} = \underline{\hspace{2cm}}$$

$$3\frac{1}{4} = \underline{\hspace{2cm}}$$

Find the value of the VARIABLE in each number sentence. (3.59)

$$4X = 12 \quad X = \underline{\hspace{2cm}}$$

$$7Y = 56 \quad Y = \underline{\hspace{2cm}}$$

$$8Z = 40 \quad Z = \underline{\hspace{2cm}}$$

$$6A = 36 \quad A = \underline{\hspace{2cm}}$$

$$9B = 72 \quad B = \underline{\hspace{2cm}}$$

coefficient variable
Color the
COEFFICIENTS red
and the VARIABLES
green in these
number sentences.

$$6A = 42 \quad A = \underline{\hspace{2cm}}$$

$$8B = 48 \quad B = \underline{\hspace{2cm}}$$

$$7C = 84 \quad C = \underline{\hspace{2cm}}$$

$$8X = 96 \quad X = \underline{\hspace{2cm}}$$

$$5Y = 60 \quad Y = \underline{\hspace{2cm}}$$

#11 Date _____

Find the missing factors.

$$\boxed{\quad} \times 6 = 42$$

$$7 \times \boxed{\quad} = 63$$

$$\boxed{\quad} \times 8 = 64$$

$$7 \times \boxed{\quad} = 28$$

$$\boxed{\quad} \times 6 = 72$$

$$6 \times \boxed{\quad} = 54$$

$$\boxed{\quad} \times 9 = 72$$

$$8 \times \boxed{\quad} = 40$$

$$\boxed{\quad} \times 7 = 49$$

What fraction of the number sentences above have an ODD product?
(There are nine number sentences, so that will be the denominator of both fractions)

What fraction of the number sentences above have an EVEN product?

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS). (3.83)

$$\begin{array}{c} \text{donut} \\ = 4 \end{array}$$

$$\begin{array}{c} \text{donut} \\ = 5 \end{array}$$

$$\begin{array}{c} \text{donut} \\ = 6 \end{array}$$

$$\begin{array}{c} \text{donut} \\ = 7 \end{array}$$

$$\begin{array}{c} \text{donut} - \text{donut} = 2 \\ \text{donut} - \text{donut} = -2 \\ \text{donut} + \text{donut} = 10 \end{array}$$

$$\begin{array}{c} \text{donut} + \text{donut} = 11 \\ \text{donut} \times \text{donut} = 25 \\ \text{donut}^2 = 25 \end{array}$$

$$\begin{array}{c} \text{donut} + \text{donut} \times \text{donut} + \text{donut} = 33 \\ (\text{donut} - \text{donut}) = 7 \\ (\text{donut} - \text{donut}) - \text{donut} = -6 \end{array}$$

Complete these Multiplication Fact Family houses. (2.36)

$$\begin{array}{c} \text{House with 72} \\ 8 \quad 9 \\ \hline \text{---} \times \text{---} = \text{---} \\ \text{---} \times \text{---} = \text{---} \\ \hline \text{---} \div \text{---} = \text{---} \\ \text{---} \div \text{---} = \text{---} \end{array}$$

$$\begin{array}{c} \text{House with 48} \\ 6 \quad 8 \\ \hline \text{---} \times \text{---} = \text{---} \\ \text{---} \times \text{---} = \text{---} \\ \hline \text{---} \div \text{---} = \text{---} \\ \text{---} \div \text{---} = \text{---} \end{array}$$

$$\begin{array}{c} \text{House with 96} \\ 8 \quad 12 \\ \hline \text{---} \times \text{---} = \text{---} \\ \text{---} \times \text{---} = \text{---} \\ \hline \text{---} \div \text{---} = \text{---} \\ \text{---} \div \text{---} = \text{---} \end{array}$$

$$\begin{array}{c} \text{House with 56} \\ 7 \quad 8 \\ \hline \text{---} \times \text{---} = \text{---} \\ \text{---} \times \text{---} = \text{---} \\ \hline \text{---} \div \text{---} = \text{---} \\ \text{---} \div \text{---} = \text{---} \end{array}$$

Find the products.

$$\begin{array}{r}
 147 \\
 \times 22 \\
 \hline
 294 \\
 +2940 \\
 \hline
 3234
 \end{array}$$

$$\begin{array}{r}
 232 \\
 \times 14 \\
 \hline
 4x232 \\
 10x232 \\
 \hline
 3234
 \end{array}$$

$$\begin{array}{r}
 157 \\
 \times 19 \\
 \hline
 9x157 \\
 10x157 \\
 \hline
 3234
 \end{array}$$

$$\begin{array}{r}
 495 \\
 \times 21 \\
 \hline
 9x157 \\
 10x157 \\
 \hline
 3234
 \end{array}$$

$$\begin{array}{r}
 298 \\
 \times 16 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 329 \\
 \times 18 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 140 \\
 \times 132 \\
 \hline
 280 \\
 4200 \\
 +14000 \\
 \hline
 18480
 \end{array}$$

$$\begin{array}{r}
 204 \\
 \times 120 \\
 \hline
 0x204 \\
 20x204 \\
 100x204 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 256 \\
 \times 143 \\
 \hline
 \end{array}$$

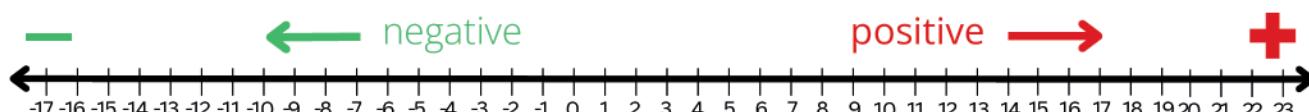
$$\begin{array}{r}
 310 \\
 \times 105 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 227 \\
 \times 186 \\
 \hline
 \end{array}$$

Five twice is how much less than five squared?

What is three more than the square root of forty-nine?

When two symbols are together in a number sentence:


Two positives make a positive. $++ = +$

A positive and a negative make a negative. $+- = -$

A negative and a positive make a negative. $-+ = -$

Two negatives make a positive. $-- = +$

Use the number line to find each sum or difference. (3.58)

$$8 - 4 = \underline{\quad}$$

$$4 + 19 = \underline{\quad}$$

$$2 - 15 = \underline{\quad}$$

$$4 - 8 = \underline{\quad}$$

$$22 - 12 = \underline{\quad}$$

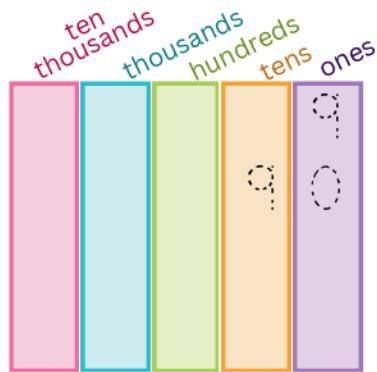
$$14 - 18 = \underline{\quad}$$

$$-4 - 8 = \underline{\quad}$$

$$-1 - 9 = \underline{\quad}$$

two negatives together
make a positive

$$-3 - 9 = \underline{\quad}$$

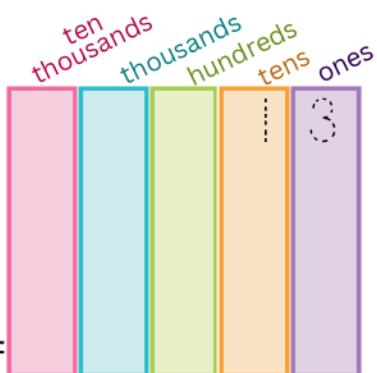

$$-4 + 8 = \underline{\quad}$$

$$-10 + 9 = \underline{\quad}$$

$$0 + -5 = \underline{\quad}$$

#12 Date _____

$$9 \times 1 =$$

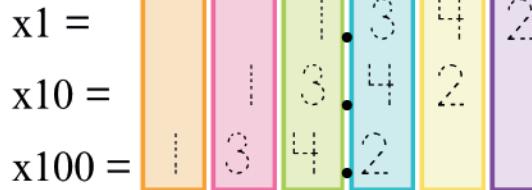


$$9 \times 10 =$$

$$9 \times 100 =$$

$$9 \times 1000 =$$

$$13 \times 1 =$$



$$13 \times 10 =$$

$$13 \times 100 =$$

$$13 \times 1000 =$$

$$1.342$$

Find the products.

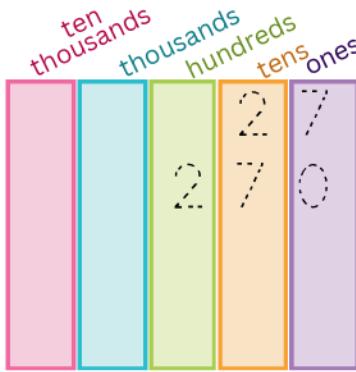
$$18 \times 10 = \underline{\hspace{2cm}}$$

$$18 \times 100 = \underline{\hspace{2cm}}$$

$$18 \times 1000 = \underline{\hspace{2cm}}$$

$$2.154 \times 10 = \underline{\hspace{2cm}}$$

$$2.154 \times 100 = \underline{\hspace{2cm}}$$

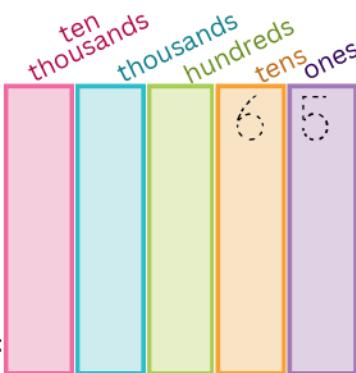

$$2.154 \times 1000 = \underline{\hspace{2cm}}$$

$$9 \times 3 =$$

$$9 \times 30 =$$

$$9 \times 300 =$$

$$9 \times 3000 =$$



$$13 \times 5 =$$

$$13 \times 50 =$$

$$13 \times 500 =$$

$$13 \times 5000 =$$

$$4.519$$

$$18 \times 20 = \underline{\hspace{2cm}}$$

$$18 \times 200 = \underline{\hspace{2cm}}$$

$$18 \times 2000 = \underline{\hspace{2cm}}$$

$$52.13 \times 10 = \underline{\hspace{2cm}}$$

$$52.13 \times 100 = \underline{\hspace{2cm}}$$

$$52.13 \times 1000 = \underline{\hspace{2cm}}$$

Convert improper fractions (top heavy) to mixed numbers. (4.25)

$$\frac{21}{8} = 2 \frac{5}{8}$$

$$\frac{15}{2} =$$

$$\frac{17}{3} =$$

$$\frac{13}{4} =$$

To convert:

1. Divide the numerator by the denominator. $21 \div 8 = 2$ with 5 leftover.

$$\frac{25}{4} =$$

$$\frac{10}{3} =$$

$$\frac{13}{2} =$$

2. The numerator of the fraction part of the mixed number is the remainder. $25-16=5$

$$\frac{13}{6} =$$

$$\frac{17}{5} =$$

$$\frac{13}{7} =$$

3. The size of the pieces, the denominator of the fractional part, remains the same.

Draw lines to match each quadrilateral to its most specific name. (3.48)

square

rhombus

trapezoid

rectangle

parallelogram

Complete the charts. (4.78)

1	I
2	II
3	III
4	IV
5	V
6	
7	
8	
9	
10	X

11	
12	
13	
14	
15	
16	
17	
18	
19	
20	XX

Write the Arabic Number for each Roman Numeral.

XXIX _____

XCIX _____

LXIV _____

D _____

LXXIX _____

CD _____

XXXII _____

LXXIV _____

XXXIX _____

M _____

XLV _____

CM _____

XLVI _____

MCXI _____

#13 Date _____

Find the products. Round each factor and estimate the product of each problem.

$$\begin{array}{r}
 29 \\
 \times 11 \\
 \hline
 29 \\
 +290 \\
 \hline
 319
 \end{array}$$

Round both factors to estimate the product.

$$\begin{array}{r}
 41 \\
 \times 19 \\
 \hline
 9 \\
 10 \\
 \hline
 \end{array}$$

Round both factors to estimate the product.

$$\begin{array}{r}
 32 \\
 \times 38 \\
 \hline
 \end{array}$$

Round both factors to estimate the product.

$$\begin{array}{r}
 31 \\
 \times 12 \\
 \hline
 62 \\
 +310 \\
 \hline
 372
 \end{array}$$

$$\begin{array}{r}
 24 \\
 \times 15 \\
 \hline
 5 \\
 10 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 37 \\
 \times 23 \\
 \hline
 3 \\
 37 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 53 \\
 \times 18 \\
 \hline
 8 \\
 10 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 25 \\
 \times 24 \\
 \hline
 4 \\
 25 \\
 \hline
 \end{array}$$

Estimated Product:
 $30 \times 10 = 300$ $20 \times 20 = 400$

Fill in the blanks to complete each chart.

	$\times 10$	$\times 100$	$\times 1000$
5	50	500	5000
3			
9			

	$\times 40$	$\times 400$	$\times 4000$
5			
3			
9			

$$\begin{array}{r}
 30 \text{ two zeros} \\
 \times 40 \\
 \hline
 1200
 \end{array}$$

$$\begin{array}{r}
 300 \text{ four zeros} \\
 \times 400 \\
 \hline
 120000
 \end{array}$$

$$\begin{array}{r}
 \$7.00 \text{ three zeros, two behind a decimal} \\
 \times 40 \\
 \hline
 \$280.00
 \end{array}$$

You can multiply big numbers in your head? You must be a genius!

Multiply mentally.

$$\begin{array}{r}
 20 \\
 \times 30 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 80 \\
 \times 80 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 50 \\
 \times 40 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 90 \\
 \times 20 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 70 \\
 \times 40 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 60 \\
 \times 50 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 500 \\
 \times 60 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 600 \\
 \times 30 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 200 \\
 \times 90 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 300 \\
 \times 200 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 200 \\
 \times 400 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 900 \\
 \times 400 \\
 \hline
 \end{array}$$

Find the value of the letter in each number sentence.

$$5X = 20 \quad X = \underline{\quad}$$

$$A - 7 = 14 \quad A = \underline{\quad}$$

$$Y + 3 = 23 \quad Y = \underline{\quad}$$

$$7B = 49 \quad B = \underline{\quad}$$

$$15 - Z = 10 \quad Z = \underline{\quad}$$

$$2^2 + C = 14 \quad C = \underline{\quad}$$

Find the products.

$$\begin{array}{r} 52 \\ \times 4 \\ \hline \end{array}$$

$$\begin{array}{r} 39 \\ \times 6 \\ \hline \end{array}$$

$$\begin{array}{r} 87 \\ \times 8 \\ \hline \end{array}$$

$$\begin{array}{r} 317 \\ \times 3 \\ \hline \end{array}$$

$$\begin{array}{r} 598 \\ \times 9 \\ \hline \end{array}$$

$$\begin{array}{r} 454 \\ \times 7 \\ \hline \end{array}$$

$$\begin{array}{r} 36 \\ \times 14 \\ \hline 4 \quad 4 \\ 1 \quad 4 \quad 4 \\ + 3 \quad 6 \quad 0 \\ \hline 504 \end{array}$$

$$\begin{array}{r} 58 \\ \times 25 \\ \hline 5 \quad 8 \\ 2 \quad 0 \quad 5 \\ \hline 20 \times 58 \end{array}$$

$$\begin{array}{r} 46 \\ \times 31 \\ \hline 1 \quad 4 \quad 6 \\ 3 \quad 0 \quad 4 \quad 6 \\ \hline 30 \times 46 \end{array}$$

$$\begin{array}{r} 37 \\ \times 23 \\ \hline 3 \quad 3 \quad 7 \\ 2 \quad 0 \quad 3 \quad 7 \\ \hline 20 \times 37 \end{array}$$

$$\begin{array}{r} 28 \\ \times 37 \\ \hline 7 \quad 2 \quad 8 \\ 3 \quad 0 \quad 2 \quad 8 \\ \hline 30 \times 28 \end{array}$$

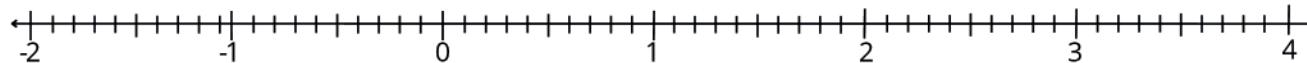
$$\begin{array}{r} 57 \\ \times 18 \\ \hline 5 \quad 7 \\ 1 \quad 8 \quad 7 \\ \hline 30 \times 28 \end{array}$$

$$\begin{array}{r} 119 \\ \times 34 \\ \hline 4 \quad 7 \quad 6 \\ 4 \quad 7 \quad 6 \quad 4 \times 119 \\ + 3 \quad 5 \quad 7 \quad 0 \quad 30 \times 119 \\ \hline 4046 \end{array}$$

$$\begin{array}{r} 277 \\ \times 26 \\ \hline 2 \quad 7 \quad 7 \\ 2 \quad 7 \quad 7 \quad 2 \times 26 \\ + 5 \quad 5 \quad 7 \quad 0 \quad 30 \times 26 \\ \hline 7042 \end{array}$$

$$\begin{array}{r} 318 \\ \times 19 \\ \hline 3 \quad 1 \quad 8 \\ 3 \quad 1 \quad 8 \quad 1 \times 19 \\ + 0 \quad 3 \quad 7 \quad 0 \quad 18 \times 19 \\ \hline 6042 \end{array}$$

$$\begin{array}{r} 480 \\ \times 14 \\ \hline 4 \quad 8 \quad 0 \\ 4 \quad 8 \quad 0 \quad 1 \times 14 \\ + 3 \quad 6 \quad 0 \quad 14 \times 14 \\ \hline 6720 \end{array}$$


$$\begin{array}{r} 194 \\ \times 28 \\ \hline 1 \quad 9 \quad 4 \\ 1 \quad 9 \quad 4 \quad 2 \times 28 \\ + 3 \quad 8 \quad 8 \quad 28 \times 28 \\ \hline 5432 \end{array}$$

$$\begin{array}{r} 249 \\ \times 23 \\ \hline 2 \quad 4 \quad 9 \\ 2 \quad 4 \quad 9 \quad 2 \times 23 \\ + 4 \quad 9 \quad 8 \quad 23 \times 23 \\ \hline 5627 \end{array}$$

Use the number line to find each sum or difference. (3.58)

 negative

positive +

$$1 - 2.5 = \underline{-1.5}$$

$$-1 + 2.5 = \underline{\quad}$$

$$-2 + 3.2 = \underline{\quad}$$

$$3 - 1.5 = \underline{\quad}$$

$$-1 - 1.3 = \underline{\quad}$$

$$1 + 1.8 = \underline{\quad}$$

$$2.1 - 1.1 = \underline{\quad}$$

$$-1.1 + 2.1 = \underline{\quad}$$

$$1.3 + 1.7 = \underline{\quad}$$

$$3.5 - 1.5 = \underline{\quad}$$

$$1 + 2.4 = \underline{\quad}$$

$$1.5 + 1.5 = \underline{\quad}$$

#14 Date _____

Draw lines to divide each set into equal halves.

$$4 \div 2 = 2$$

$$8 \div 2 =$$

$$6 \div 2 =$$

Divide.

Multiply.

Subtract.

Bring Down.

Repeat.

$$5 \overline{)6\ 5}$$

Divide: 1
Multiply: 5
Subtract: 5
Bring Down: 5
Repeat: No Remainder

$$3 \overline{)8\ 7}$$

Divide: 2
Multiply: 6
Subtract: 6
Bring Down: 7
Repeat: No Remainder

$$4 \overline{)8\ 4}$$

Divide: 2
Multiply: 8
Subtract: 8
Bring Down: 4
Repeat: No Remainder

$$7 \overline{)9\ 1}$$

Divide: 1
Multiply: 7
Subtract: 7
Bring Down: 1
Repeat: No Remainder

$$8 \overline{)2\ 5\ 6}$$

Divide: 3
Multiply: 24
Subtract: 24
Bring Down: 6
Repeat: No Remainder

$$3 \overline{)2\ 3\ 4}$$

Divide: 7
Multiply: 21
Subtract: 21
Bring Down: 4
Repeat: No Remainder

$$6 \overline{)3\ 6\ 6}$$

Divide: 6
Multiply: 36
Subtract: 36
Bring Down: 6
Repeat: No Remainder

$$9 \overline{)5\ 3\ 1}$$

Divide: 5
Multiply: 45
Subtract: 45
Bring Down: 1
Repeat: No Remainder

$$2 \overline{)1\ 9\ 2}$$

Divide: 1
Multiply: 2
Subtract: 2
Bring Down: 9
Repeat: No Remainder

Draw circles to group the items, then complete the equations. (4.16)

$$\frac{18}{9} =$$

$$18 \div 9 =$$

$$9 \overline{)18}$$

What is $1/9$ of 18?

What is $2/9$ of 18?

$$\frac{18}{6} =$$

$$18 \div 6 =$$

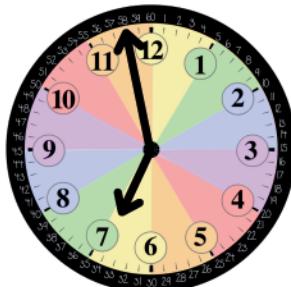
$$6 \overline{)18}$$

What is $1/6$ of 18?

What is $5/6$ of 18?

$$\frac{18}{3} =$$

$$18 \div 3 =$$


$$3 \overline{)18}$$

What is $1/3$ of 18?

What is $2/3$ of 18?

Think of an even number. Multiply it by 5. What number is the last digit of the product? Try it again with a different even number.

If this is morning, what time will it be in 3 hours and 20 minutes?

Find the missing numbers in each number sentence.

2	x		x	4	=	24
x		x		x		
2	x	2	=			
x		x		=		
	x			=	28	
=		=				
16		84				

3	x	3	x		=	27
x		x		x		
	x	8	=		x	40
=		÷		x		
30	÷		=			
		=		=		
		4		30		

$$\begin{array}{r}
 \text{6) } \begin{array}{r}
 \boxed{6} \quad \boxed{7} \quad \boxed{8} \\
 - \quad \boxed{} \\
 \hline
 \boxed{6} \quad \boxed{} \quad \boxed{}
 \end{array} \\
 - \quad \boxed{} \\
 \hline
 \boxed{6} \quad \boxed{} \quad \boxed{}
 \end{array}$$

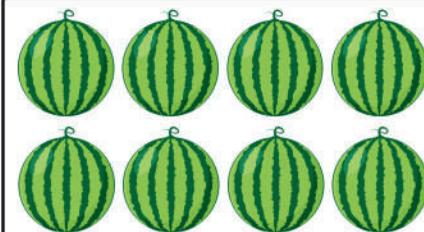
$$\begin{array}{r}
 & \boxed{} & \boxed{} & \boxed{} \\
 5) & \boxed{5} & \boxed{9} & \boxed{5} \\
 - & \boxed{} & \boxed{} & \boxed{} \\
 \hline
 & \boxed{} & \boxed{} & \boxed{} \\
 - & \boxed{} & \boxed{} & \boxed{} \\
 \hline
 & \boxed{} & \boxed{} & \boxed{} \\
 - & \boxed{} & \boxed{} & \boxed{} \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 & \boxed{} & \boxed{} & \boxed{} \\
 8) & \boxed{9} & \boxed{8} & \boxed{4} \\
 - & \boxed{} & & \\
 \hline
 & \boxed{} & \boxed{} & \\
 - & \boxed{} & \boxed{} & \\
 \hline
 & \boxed{} & \boxed{} & \boxed{} \\
 - & & \boxed{} & \\
 \hline
 & & \boxed{} & \\
 \end{array}$$

$$\begin{array}{r}
 \begin{array}{c}
 \boxed{} \quad \boxed{} \quad \boxed{}
 \end{array} \\
 3 \overline{) 8 \quad 6 \quad 7} \\
 - \boxed{} \\
 \hline
 \begin{array}{c}
 \boxed{} \quad \boxed{} \\
 - \boxed{} \quad \boxed{} \\
 \hline
 \boxed{} \quad \boxed{} \quad \boxed{}
 \end{array}
 \end{array}$$

Multiply the quotient by the divisor to check your division.

$$\begin{array}{r} \underline{x} \quad 6 \\ \hline \end{array}$$


X 5

$$\begin{array}{r} \boxed{1} \\ \times 8 \\ \hline \end{array}$$

$$\begin{array}{r} \boxed{1} \\ \times 3 \\ \hline \end{array}$$

#15 Date _____

Draw lines to divide each set into equal halves. Circle any leftover in red.

$5 \div 2 = 2 \text{ R } 1$	$7 \div 2 =$	$3 \div 2 =$
$9 \div 2 =$	$11 \div 2 =$	$8 \div 2 =$

What is half of four squared plus four?

What is half of the quantity of seven and three?

Today you get to be lazy and leave remainders in your quotient. Enjoy it while it lasts!

$$4 \overline{)5 \ 3 \ 5} \quad \begin{array}{r} \boxed{1} \boxed{3} \boxed{3} \ R \ 3 \\ -4 \\ \hline \boxed{1} \\ -2 \\ \hline \boxed{3} \\ -2 \\ \hline \boxed{1} \\ \text{Remainder } \boxed{3} \end{array}$$

$$2 \overline{)3 \ 1 \ 7} \quad \begin{array}{r} \boxed{} \boxed{} \boxed{} \ R \ \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ \text{Remainder } \boxed{} \end{array}$$

$$7 \overline{)8 \ 9 \ 3} \quad \begin{array}{r} \boxed{} \boxed{} \boxed{} \ R \ \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ \text{Remainder } \boxed{} \end{array}$$

$$5 \overline{)7 \ 7 \ 9} \quad \begin{array}{r} \boxed{} \boxed{} \boxed{} \ R \ \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ -\boxed{} \\ \hline \boxed{} \\ \text{Remainder } \boxed{} \end{array}$$

Use multiplication to check your division.

$$\begin{array}{r} \boxed{1} \boxed{3} \boxed{3} \\ \times \ 4 \\ \hline \boxed{5} \boxed{3} \boxed{2} \end{array} + 3$$

$$\begin{array}{r} \boxed{} \boxed{} \boxed{} \\ \times \ 2 \\ \hline \end{array}$$

$$\begin{array}{r} \boxed{} \boxed{} \boxed{} \\ \times \ 7 \\ \hline \end{array}$$

$$\begin{array}{r} \boxed{} \boxed{} \boxed{} \\ \times \ 5 \\ \hline \end{array}$$

add the remainder 535

add the remainder _____

add the remainder _____

add the remainder _____

$$3 \overline{)4 \ 1 \ 7 \ 5} \ R \square$$

Subtraction steps:

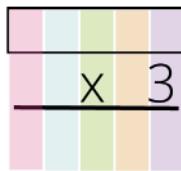
- 4 - 3 = 1 (in green)
- 10 - 3 = 7 (in green)
- 70 - 3 = 67 (in green)
- 67 - 3 = 64 (in green)
- 64 - 3 = 61 (in green)
- 61 - 3 = 58 (in green)
- 58 - 3 = 55 (in green)
- 55 - 3 = 52 (in green)
- 52 - 3 = 49 (in green)
- 49 - 3 = 46 (in green)
- 46 - 3 = 43 (in green)
- 43 - 3 = 40 (in green)
- 40 - 3 = 37 (in green)
- 37 - 3 = 34 (in green)
- 34 - 3 = 31 (in green)
- 31 - 3 = 28 (in green)
- 28 - 3 = 25 (in green)
- 25 - 3 = 22 (in green)
- 22 - 3 = 19 (in green)
- 19 - 3 = 16 (in green)
- 16 - 3 = 13 (in green)
- 13 - 3 = 10 (in green)
- 10 - 3 = 7 (in green)
- 7 - 3 = 4 (in green)
- 4 - 3 = 1 (in green)
- 1 - 3 = -2 (in green)

Remainder: \square

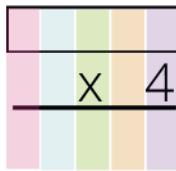
$$4 \overline{)5 \ 1 \ 2 \ 1} \ R \square$$

Subtraction steps:

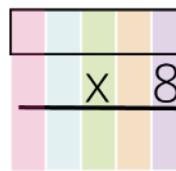
- 5 - 4 = 1 (in green)
- 10 - 4 = 6 (in green)
- 60 - 4 = 56 (in green)
- 56 - 4 = 52 (in green)
- 52 - 4 = 48 (in green)
- 48 - 4 = 44 (in green)
- 44 - 4 = 40 (in green)
- 40 - 4 = 36 (in green)
- 36 - 4 = 32 (in green)
- 32 - 4 = 28 (in green)
- 28 - 4 = 24 (in green)
- 24 - 4 = 20 (in green)
- 20 - 4 = 16 (in green)
- 16 - 4 = 12 (in green)
- 12 - 4 = 8 (in green)
- 8 - 4 = 4 (in green)
- 4 - 4 = 0 (in green)


Remainder: \square

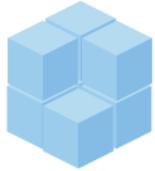
$$8 \overline{)8 \ 0 \ 9 \ 3} \ R \square$$


Subtraction steps:

- 8 - 8 = 0 (in green)
- 00 - 8 = 02 (in green)
- 02 - 8 = 04 (in green)
- 04 - 8 = 06 (in green)
- 06 - 8 = 08 (in green)
- 08 - 8 = 00 (in green)


Remainder: \square

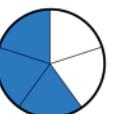
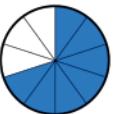
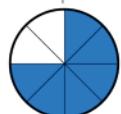
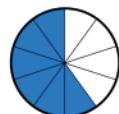
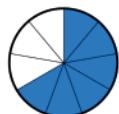
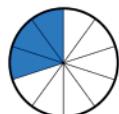
add the remainder _____



add the remainder _____

add the remainder _____

How many cubes are in this structure?







How many cubes are in this structure?

Twelve is how much less than the square root of one hundred forty-four?

The quantity of thirteen and ten is how much more than half of forty?

Draw lines to MATCH these fractions so they add up to ONE WHOLE. (3.15)

#16 Date _____

Trace then write each term, then draw a line to match each term to its definition.

numerator _____

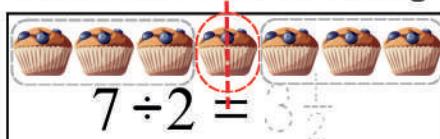
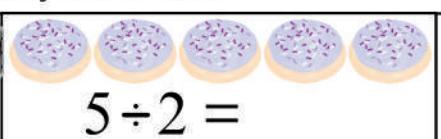
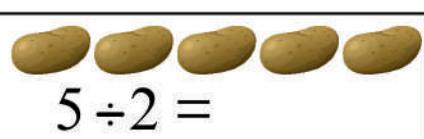
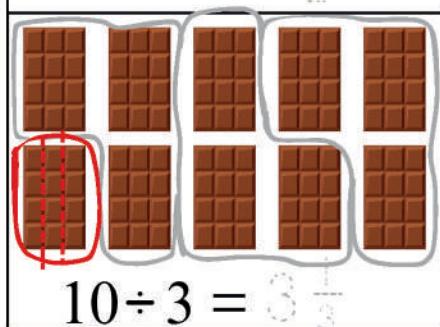
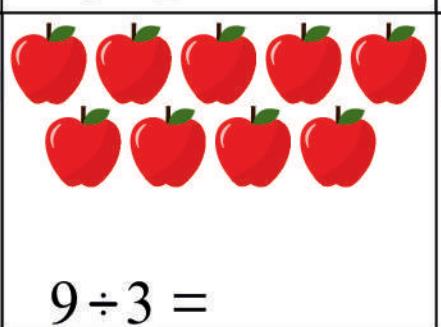
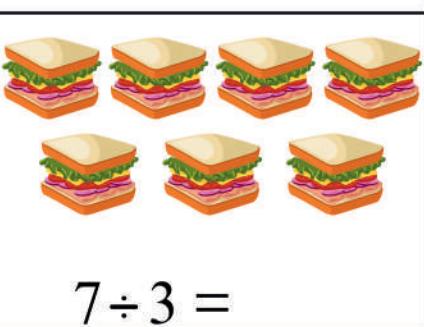
- The answer to a division problem.

denominator _____

- A piece of something.

fraction _____

- The bottom number in a fraction, it tells you how many pieces the shape is divided into.







divisor _____

- The number by which the dividend is divided.

quotient _____

- The top number in a fraction, it tells you how many pieces you have.

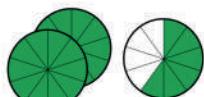
Divide each set, including any leftovers.

 $7 \div 2 = 3 \frac{1}{2}$	 $5 \div 2 =$	 $5 \div 2 =$
 $10 \div 3 = 3 \frac{1}{3}$	 $9 \div 3 =$	 $7 \div 3 =$

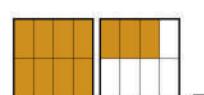
These problems are from page 28 & 29, so you don't have to do the whole problem. Just divide the remainder by the divisor.

$$535 \div 4 = 133 \text{ R}3 = \underline{133} \frac{3}{4}$$

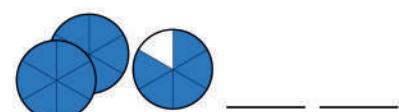
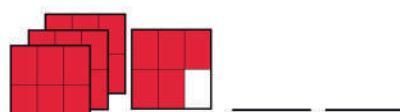
$$779 \div 5 = 155 \text{ R}4 = \underline{155} \frac{4}{5}$$


$$317 \div 2 = 158 \text{ R}1 = \underline{\quad}$$

$$4175 \div 3 = 1391 \text{ R}2 = \underline{1391} \frac{2}{3}$$


$$893 \div 7 = 127 \text{ R}4 = \underline{\quad}$$

$$5121 \div 4 = 1280 \text{ R}1 = \underline{\quad}$$

Name these fractions as mixed numbers and improper fractions.

Find mixed number quotients.

$$9 \overline{)704}$$

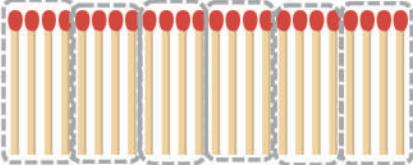
78
- 81
14
- 18
2

$$5 \overline{)458}$$

40
- 5
8

$$8 \overline{)689}$$

64
- 48
9


$$3 \overline{)235}$$

21
- 3
5

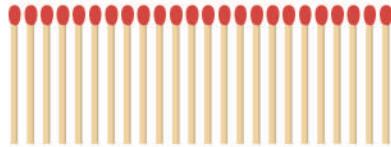
$$7 \overline{)449}$$

42
- 49
9

Divide the matchsticks into SIX equal groups. (4.16)

What is $1/6$ of 24?

What is $2/6$ of 24?

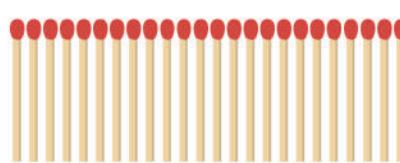

What is $3/6$ of 24?

What is $4/6$ of 24?

What is $5/6$ of 24?

What is $6/6$ of 24?

Divide the matchsticks into FOUR equal groups.


What is $1/4$ of 24?

What is $2/4$ of 24?

What is $3/4$ of 24?

What is $4/4$ of 24?

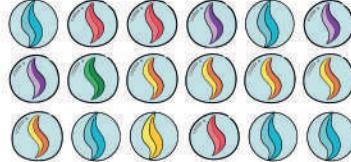
Divide the matchsticks into EIGHT equal groups.

What is $1/8$ of 24?

What is $2/8$ of 24?

What is $3/8$ of 24?

What is $4/8$ of 24?


What is $5/8$ of 24?

What is $6/8$ of 24?

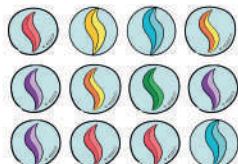
What is $7/8$ of 24?

What is $8/8$ of 24?

Divide the marbles into SIX equal groups.

What is $1/6$ of 18?

What is $2/6$ of 18?


What is $3/6$ of 18?

What is $4/6$ of 18?

What is $5/6$ of 18?

What is $6/6$ of 18?

Divide the marbles into SIX equal groups.

What is $1/6$ of 12?

What is $2/6$ of 12?

What is $3/6$ of 12?

What is $4/6$ of 12?

What is $5/6$ of 12?

What is $6/6$ of 12?

$$\frac{1}{12} \text{ of } 36 =$$

$$\frac{1}{6} \cancel{\frac{2}{12}} \text{ of } 36 =$$

$$\frac{1}{4} \cancel{\frac{3}{12}} \text{ of } 36 =$$

$$\frac{1}{3} \cancel{\frac{4}{12}} \text{ of } 36 =$$

$$\frac{1}{2} \cancel{\frac{6}{12}} \text{ of } 36 =$$

#17 Date _____

Divide.

$$15 \overline{)255}$$

15)255
-15

105
-105

0

$$14 \overline{)350}$$

14)350
-14

210
-14

70
-70

0

$$23 \overline{)529}$$

23)529
-46

62
-62

9
-9

0

$$17 \overline{)306}$$

17)306
-17

136
-17

6
-6

0

$$4 \overline{)260}$$

4)260
-24

20
-20

0

$$4 \overline{)340}$$

4)340
-32

20
-20

0

$$5 \overline{)360}$$

5)360
-35

10
-10

0

$$7 \overline{)434}$$

7)434
-42

14
-14

0

$$4 \overline{)101.00}$$

4)101.00
-8

22
-20

12
-12

0
-20

0

$$6 \overline{)427.50}$$

6)427.50
-42

55
-48

75
-60

150
-120

30
-30

0

$$8 \overline{)748.00}$$

8)748.00
-64

108
-80

28
-24

40
-40

0

$$3 \overline{)24525}$$

3)24525
-21

35
-30

52
-48

40
-30

10
-9

10
-9

10

Adding or subtracting by place value (3.8)

add/subtract 1 in the ONES place

1 less

16, 17, 18

1 more

add/subtract 1 in the TENS place

10 less

117, 127, 137

10 more

add/subtract 1 in the HUNDREDS place

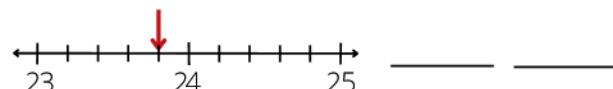
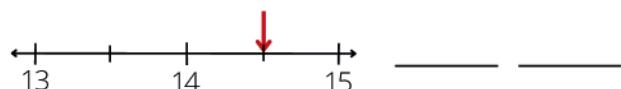
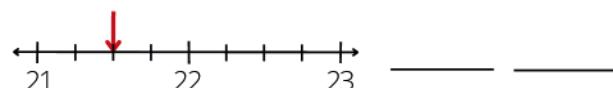
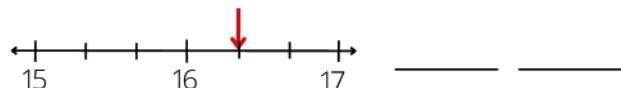
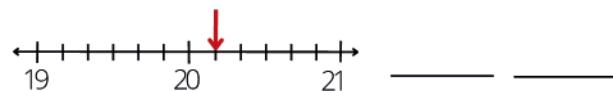
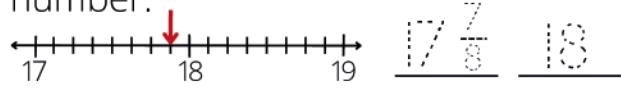
100 less

149, 249, 349

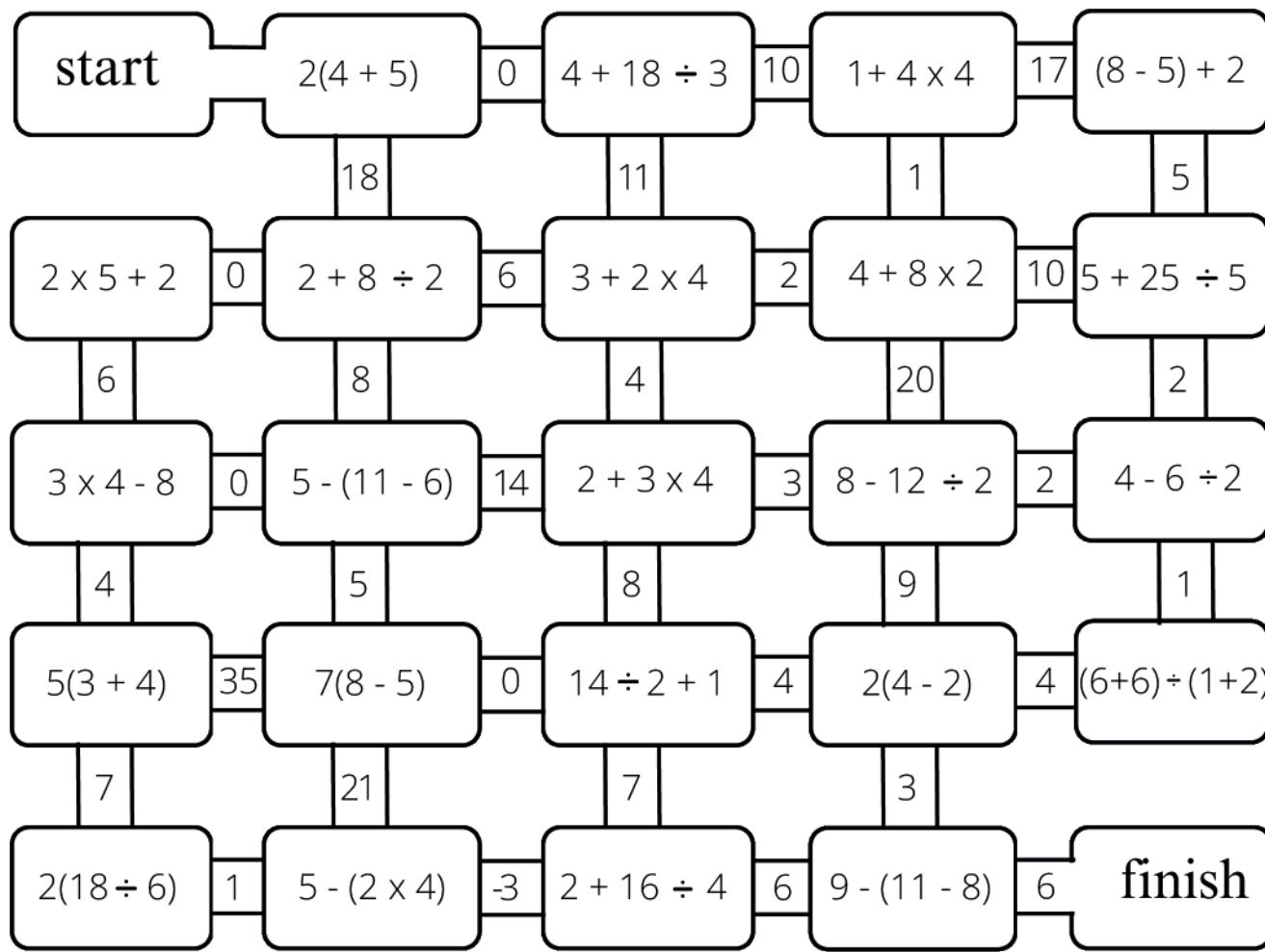
100 more

____, 10, ____

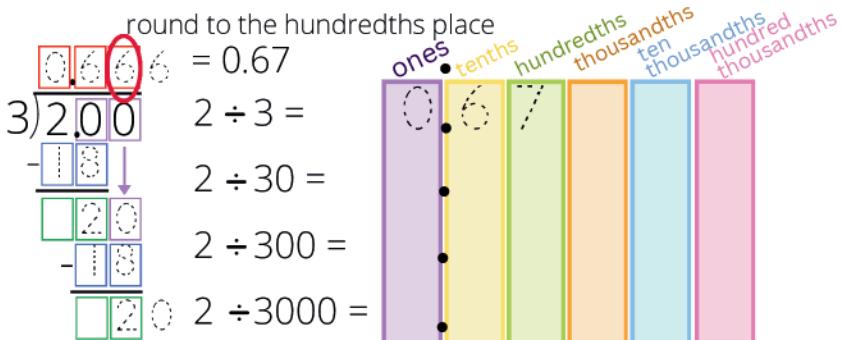
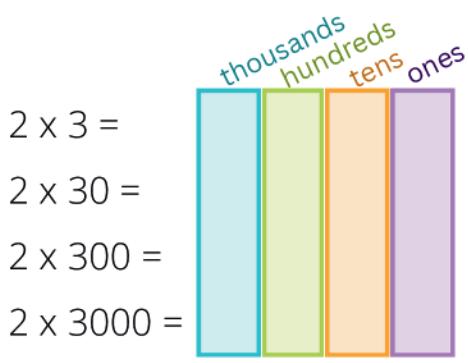
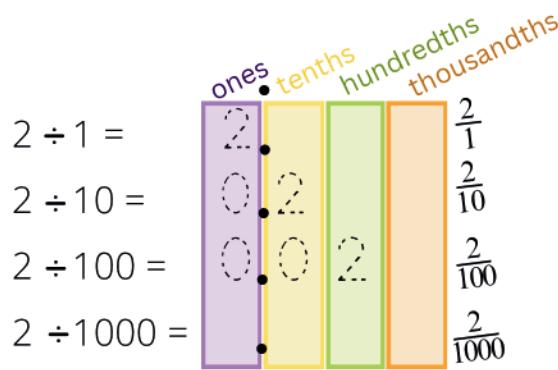
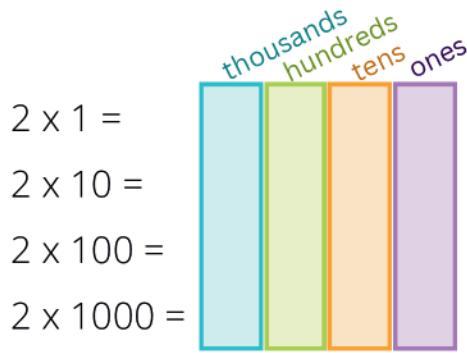
____, 509, ____







____, 179, ____

____, 29, ____


____, 312, ____

____, 133, ____





To which mixed number does each arrow point? Round to the nearest whole number.

Choose the correct answer to each problem to find your way through this maze. (3.83)

#18 Date _____

Use your place value chart to find the products and quotients.

$$29 \times 10 = 290$$

$$29 \div 10 = 2.9$$

$$29 \div 100 = 0.29$$

$$51 \times 10 = \underline{\hspace{2cm}}$$

$$51 \div 10 = \underline{\hspace{2cm}}$$

$$51 \div 100 = \underline{\hspace{2cm}}$$

$$68 \times 10 = \underline{\hspace{2cm}}$$

$$68 \div 10 = \underline{\hspace{2cm}}$$

$$68 \div 100 = \underline{\hspace{2cm}}$$

$$37 \times 10 = \underline{\hspace{2cm}}$$

$$37 \div 10 = \underline{\hspace{2cm}}$$

$$37 \div 100 = \underline{\hspace{2cm}}$$

$$14 \times 10 = \underline{\hspace{2cm}}$$

$$14 \div 10 = \underline{\hspace{2cm}}$$

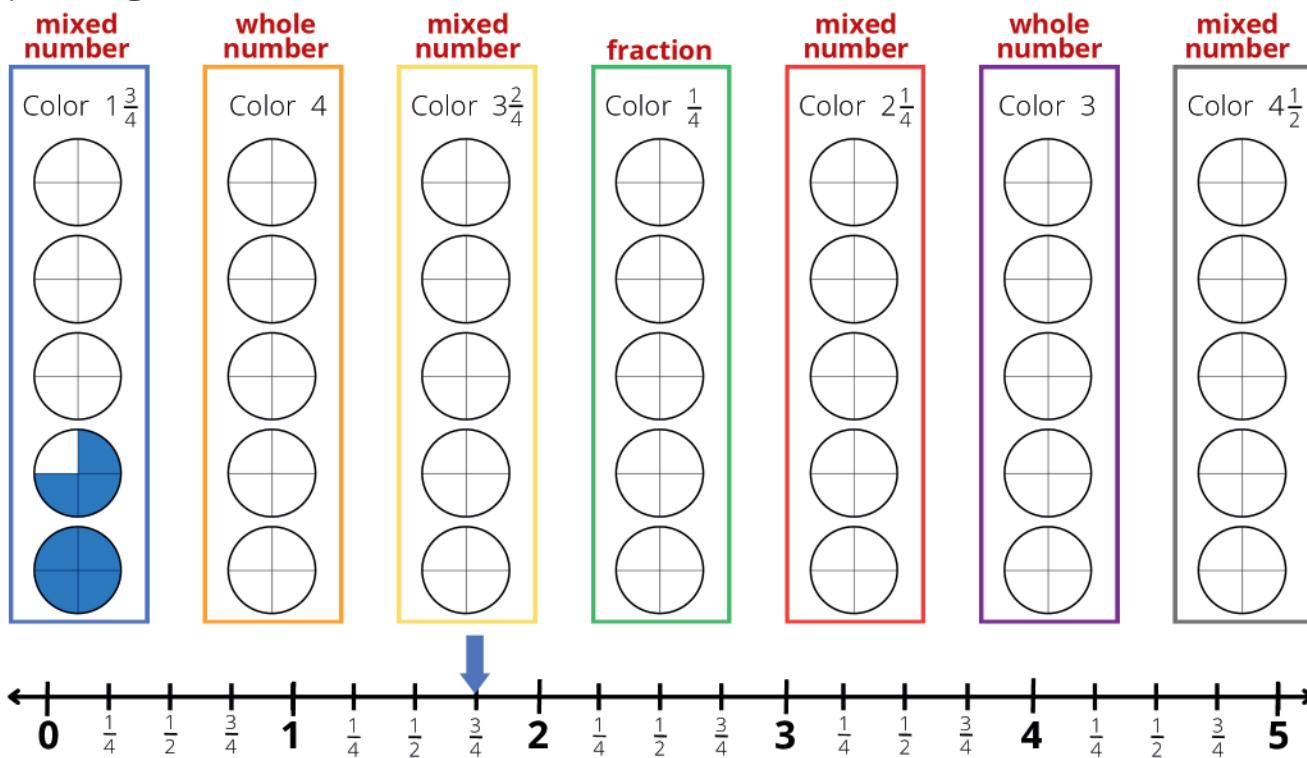
$$14 \div 100 = \underline{\hspace{2cm}}$$

1 5 6 2
thousands hundreds tens ones

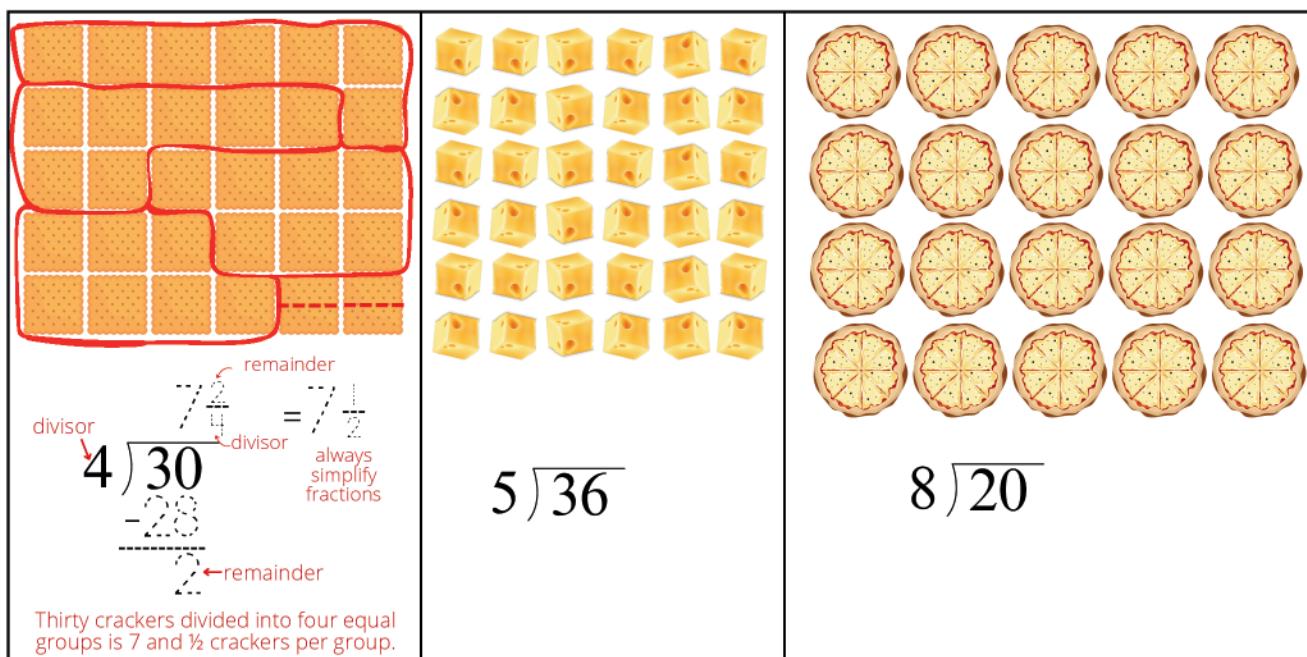
Round to the nearest TEN _____

Round to the nearest HUNDRED _____

Round to the nearest THOUSAND _____

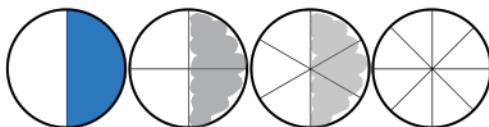

1 9.5 5 2
tens ones tenths hundredths thousandths

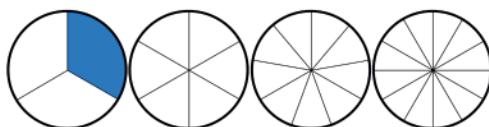
Round to the nearest TEN _____


Round to the nearest TENTH _____

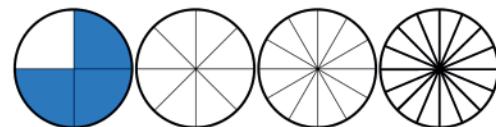
Round to the nearest HUNDREDTH _____

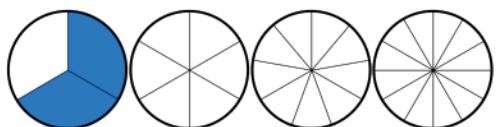
Color the number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below. (3.16)


Draw lines to divide each set into the number of groups specified by the divisor. Circle any REMAINDERS in red, then divide them into the number of groups specified by the divisor. Divide the remainder PIECES equally between the groups.


LVXTAOODIVISORPQ
 MPJIYQNESUPZEROT
 FRACTIIONOFBEHSTR
 LOYOEKUORKATOLNE
 ADDGWOZMOVMOBCED
 MULTIPLICATIIONLN
 ICOGOIANBOXAOYAI
 CTHXROTAREMUNDVA
 EOUWQUOTIENTRIIM
 DVOEFLOTGAODKUE
 FCZMOUJRHRNOBOQR
 ONOISIVIDPCOQDES

- The answer to a division problem.
- The leftover after dividing.
- A piece of something.
- The bottom number in a fraction, it tells you how many pieces the shape is divided into.
- The number by which the dividend is divided.
- The top number in a fraction, it tells you how many pieces you have.
- Another name for repeated addition.
- Math operation for separating an amount into equal parts.
- A piece of something that always has a denominator of ten or a power of ten.
- The answer to a multiplication problem.
- Fractions with the same value are _____.


Find three equivalent fractions for each fraction. Color the circles to match.


$$\frac{1}{2} = \frac{2}{\boxed{4}} = \frac{3}{\boxed{6}} = \boxed{\quad}$$

$$\frac{1}{3} = \boxed{\quad} = \boxed{\quad} = \boxed{\quad}$$

$$\frac{3}{4} = \boxed{\quad} = \boxed{\quad} = \boxed{\quad}$$

$$\frac{2}{3} = \boxed{\quad} = \boxed{\quad} = \boxed{\quad}$$

You bought a dozen candy bars for 75 cents each. How much did you spend?

What is the total price for 4 churros that cost \$2.50 each?

Find the quotients.

$$11 \overline{)374}$$

Quotient:

11

11

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

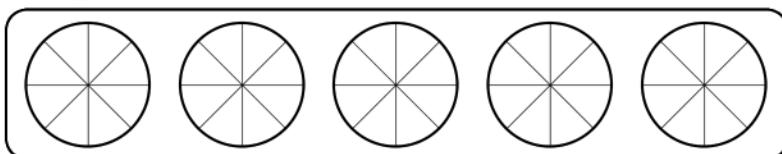
22

22

22

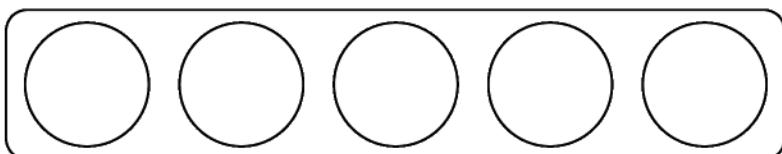
22

22


22

22

#20 Date _____


Order these fractions from least to greatest, then color them and label them.
(All denominators are the same!)

$\frac{3}{8}$ $\frac{4}{8}$ $\frac{6}{8}$ $\frac{1}{8}$ $\frac{7}{8}$

(All of the numerators are one!)

$\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{3}$

Compare these fractions (<, >, =).

(All numerators are one! Larger denominators are smaller pieces.)

$$\frac{1}{2} \text{ } \bigcirc \text{ } \frac{1}{3}$$

$$\frac{1}{4} \text{ } \bigcirc \text{ } \frac{1}{5}$$

$$\frac{1}{3} \text{ } \bigcirc \text{ } \frac{1}{4}$$

$$\frac{1}{5} \text{ } \bigcirc \text{ } \frac{1}{8}$$

Compare these fractions (<, >, =). (The denominators in each pair are the same, so the pieces are the same size!)

$$\frac{3}{4} \text{ } \bigcirc \text{ } \frac{1}{4}$$

$$\frac{5}{9} \text{ } \bigcirc \text{ } \frac{4}{9}$$

$$\frac{2}{4} \text{ } \bigcirc \text{ } \frac{5}{4}$$

$$\frac{1}{7} \text{ } \bigcirc \text{ } \frac{6}{7}$$

Use your fraction circles to compare these fractions.

$$\frac{2}{3} \text{ } \bigcirc \text{ } \frac{3}{5}$$

$$\frac{5}{8} \text{ } \bigcirc \text{ } \frac{3}{5}$$

$$\frac{1}{4} \text{ } \bigcirc \text{ } \frac{4}{5}$$

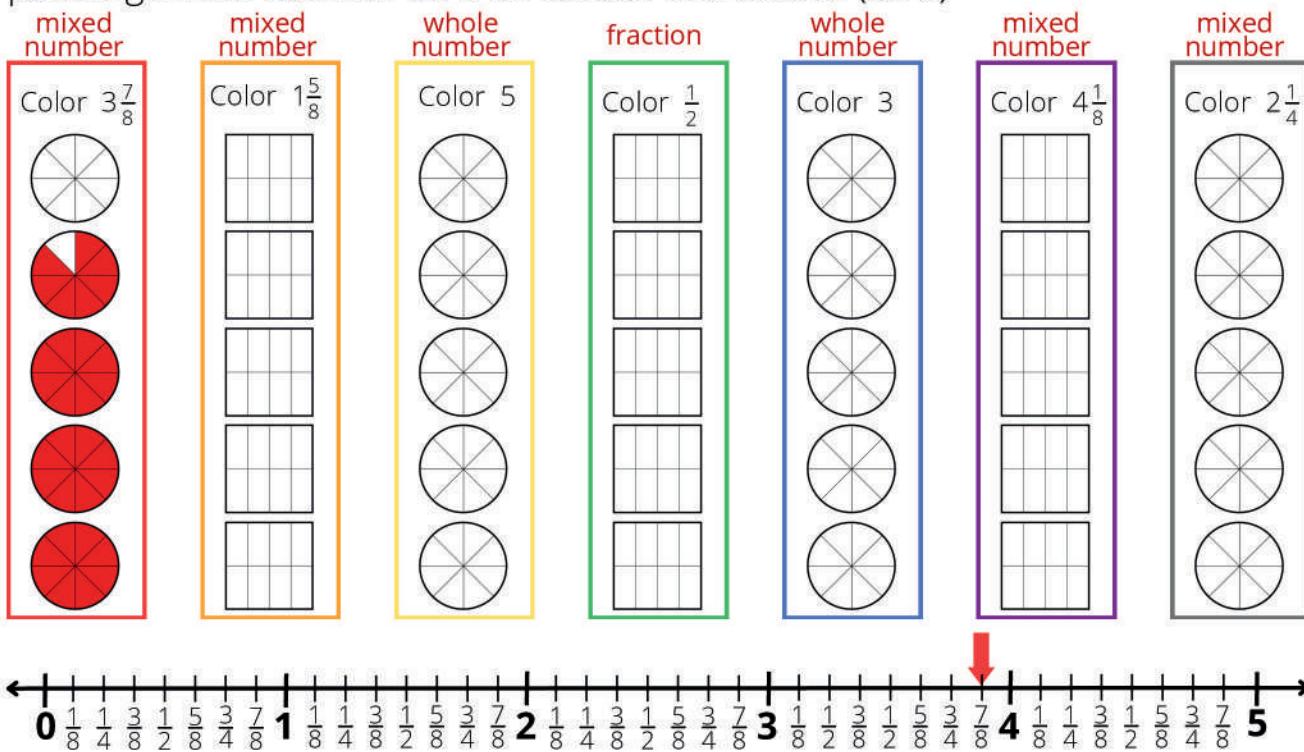
$$\frac{5}{6} \text{ } \bigcirc \text{ } \frac{3}{4}$$

$$\frac{3}{6} \text{ } \bigcirc \text{ } \frac{1}{2}$$

$$\frac{1}{3} \text{ } \bigcirc \text{ } \frac{3}{4}$$

$$\frac{4}{4} \text{ } \bigcirc \text{ } \frac{5}{5}$$

$$\frac{2}{3} \text{ } \bigcirc \text{ } \frac{7}{8}$$


What is one third of thirty-six?

How much more is twice the quantity of seven and two than six times three?

What times five is one less than four squared?

Color the number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below. (3.16)

Adding or subtracting by place value (3.8)

add/subtract 2 in the ONES place

2 less 2 more

23, 25, 27

 , 17,

 , 32,

add/subtract 2 in the TENS place

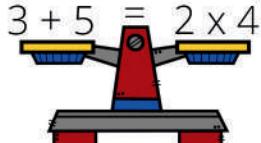
20 less 20 more

126, 145, 165

 , 527,

 , 268,

add/subtract 2 in the HUNDREDS place


200 less 200 more

194, 394, 594

 , 279,

 , 553,

Balance these equations. Remember to follow the Order of Operations. (4.31)

$$6 + 3^2 = 5 \times \underline{\quad}$$

$$\sqrt{25} + 3 = 56 \div \underline{\quad}$$

$$\underline{\quad} + 4^2 = 6 \times 3$$

$$\underline{\quad} \times 6 = 3(4 + 8)$$

$$18 \div \underline{\quad} = 3 \times 3$$

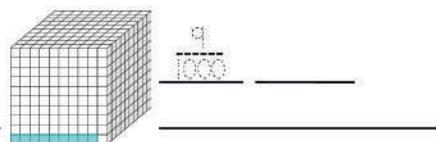
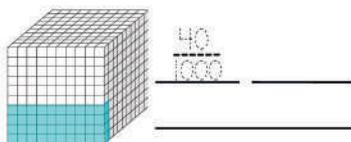
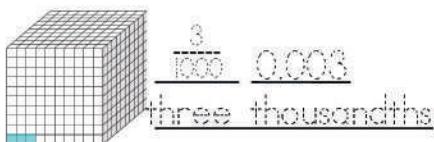
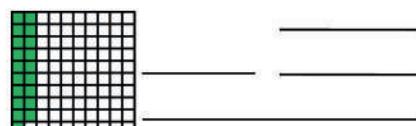
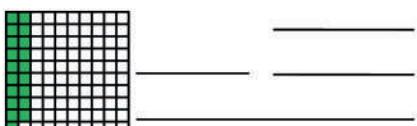
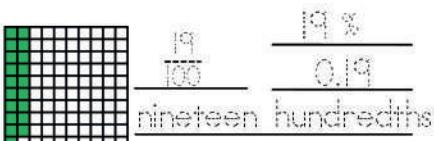
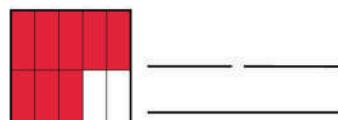
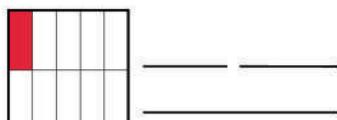
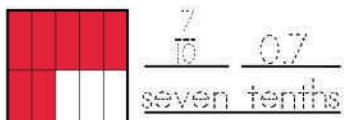
$$8^2 = 4 \times \underline{\quad} \times 2$$

$$2^3 \times 6 = 4 \times \underline{\quad}$$

$$5 \times 8 = \underline{\quad} \times 10$$

$$5(4 + 5) = 15 \times \underline{\quad}$$

$$6^2 = 4 \times \underline{\quad}$$










$$2(3 + 3) = 48 \div \underline{\quad}$$

$$48 \div \underline{\quad} = \sqrt{36}$$

$$3^3 - 7 = \underline{\quad} \times 5$$

#21 Date _____

Identify each shaded part using a fraction, a decimal, words and percentage (when the denominator is 100).

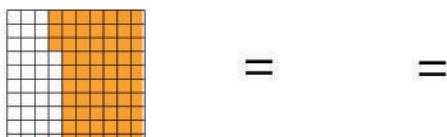
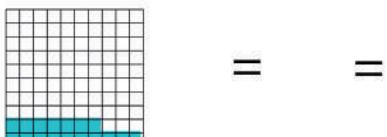
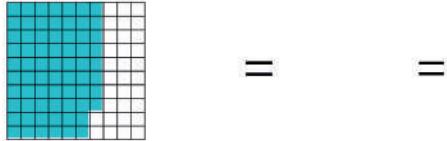
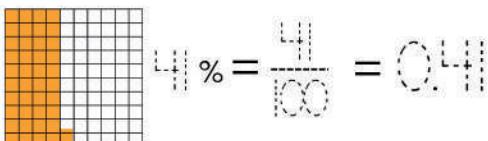


This bracelet has 15 beads.
What fraction of them are blue?

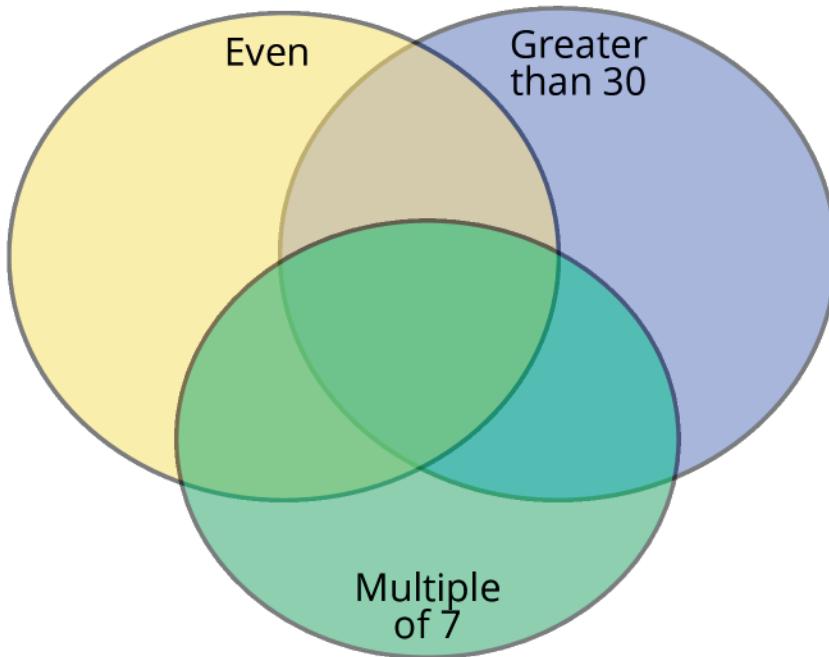
What fraction of them are pink?

What fraction of them are yellow?

What is the sum of all three fractions?





Draw two lines that are:

perpendicular horizontal and vertical	parallel vertical
intersecting oblique	parallel horizontal


Two quarters and one dime is what percent of a dollar?

Each block has 100 squares. Write the percentage, fraction and decimal for each.

Find the correct space for each number in this Venn diagram. Cross out numbers as you use them. Circle any leftover numbers that don't fit into the diagram. (3.30)

21	12
35	54
30	37
6	9
52	14
49	36
40	42
28	56
15	7
98	70
99	84

Use your place value chart to find the products and quotients.

$$35 \times 10 = \underline{350}$$

$$35 \div 10 = \underline{3.5}$$

$$35 \div 100 = \underline{0.35}$$

$$83 \times 10 = \underline{\quad}$$

$$83 \div 10 = \underline{\quad}$$

$$83 \div 100 = \underline{\quad}$$

$$24 \times 20 = \underline{\quad}$$

$$24 \div 20 = \underline{\quad}$$

$$24 \div 200 = \underline{\quad}$$

$$26 \times 20 = \underline{\quad}$$

$$26 \div 20 = \underline{\quad}$$

$$26 \div 200 = \underline{\quad}$$

$$44 \times 20 = \underline{\quad}$$

$$44 \div 20 = \underline{\quad}$$

$$44 \div 200 = \underline{\quad}$$

Use words to name the following numbers:

345,012 _____

9,003,199 _____

14,300,005 _____

What year is one century after 1776? _____

#22 Date _____

Draw lines to match terms.

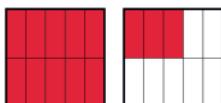
indeterminate	$\frac{1}{0}$
mixed number	$\frac{0}{0}$
0	$\frac{1}{1}$
undefined	2
whole number	$\frac{0}{1}$
1	$\frac{35}{4}$
improper fraction	$1\frac{1}{2}$

Trace each term.

indeterminate

mixed number

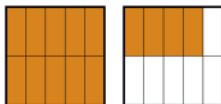
undefined

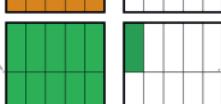

whole number

integer

improper fraction

Draw lines to match the mixed numbers, pictures, decimals and improper fractions. (4.25)


$1\frac{1}{10}$


$1\frac{4}{10}$

$1\frac{3}{10}$

$1\frac{8}{10}$

$1\frac{7}{10}$

1.7

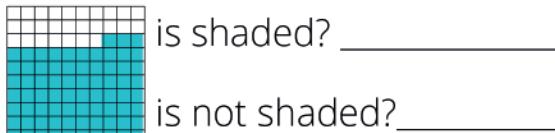
$\frac{18}{10}$

1.8

$\frac{13}{10}$

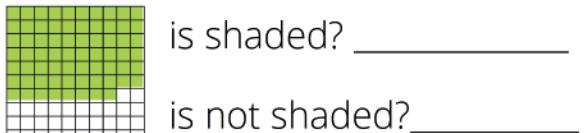
1.4

$\frac{11}{10}$


1.3

$\frac{17}{10}$

1.1


$\frac{14}{10}$

What percent:

is shaded? _____

is not shaded? _____

is shaded? _____

is not shaded? _____

Add the percentages _____

42

Add the percentages _____

Find the missing numbers in each number sentence.

$$\begin{array}{|c|c|c|c|c|c|} \hline 2 & x & x & & = & 54 \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & x & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & \div & 6 & = & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & x & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline 9 & x & & & = & 36 \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline 6 & x & 6 & = & & \\ \hline \end{array}$$

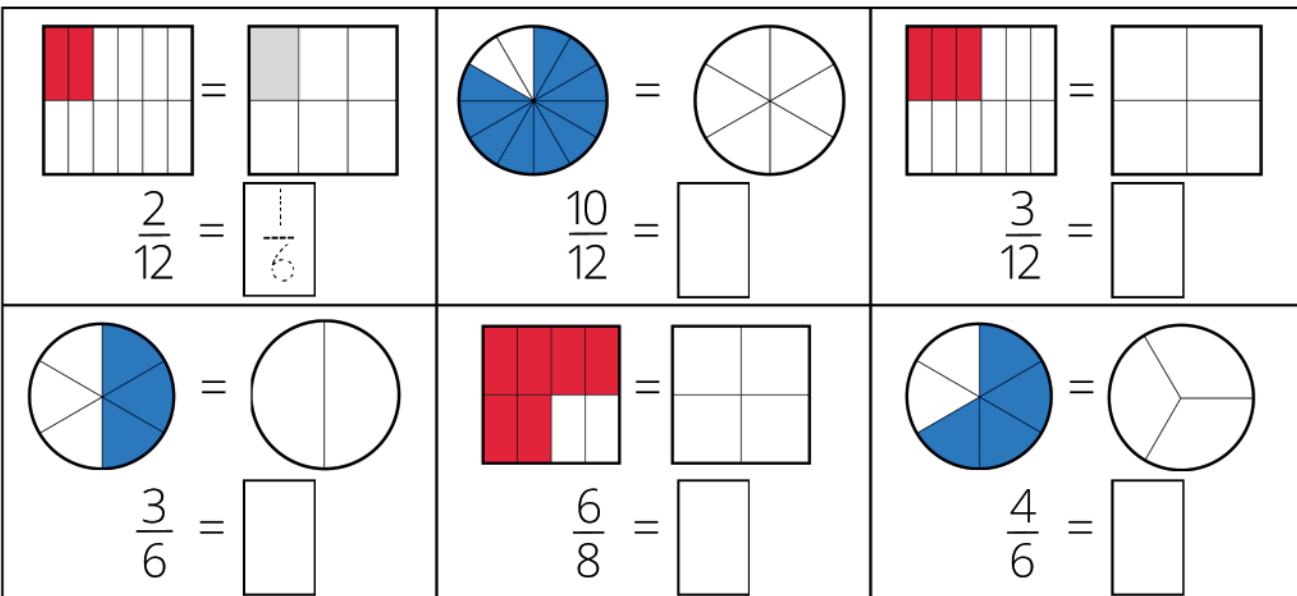
$$\begin{array}{|c|c|c|c|c|c|} \hline 7 & & & 8 & & \\ \hline x & & & x & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline 4 & x & & x & & \\ \hline x & & x & & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & & = & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline 4 & x & & x & & \\ \hline & & & & = & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & & = & \\ \hline \end{array}$$


$$\begin{array}{|c|c|c|c|c|c|} \hline 16 & & & 84 & & \\ \hline & & & & = & \\ \hline \end{array}$$

What is the product of thirty-two and forty?

What is the sum of three hundred four and five hundred ninety-two?

Simplify these fractions.

$$\frac{6}{6} = \frac{1}{1}$$

$$\frac{2}{4} = \frac{1}{2}$$

$$\frac{12}{4} = \frac{3}{1}$$

$$\frac{4}{8} = \frac{1}{2}$$

$$\frac{5}{5} = \frac{1}{1}$$

$$\frac{25}{5} = \frac{5}{1}$$

#23 Date _____

Add and subtract these mixed numbers. You can stack them or convert them to improper fractions.

$$1\frac{1}{5} + 2\frac{3}{5} =$$

$$4\frac{2}{3} - 1\frac{1}{3} =$$

$$3\frac{1}{6} + 1\frac{1}{6} =$$

$$6\frac{1}{2} - 3\frac{1}{2} =$$

$$3\frac{3}{4} + 3\frac{1}{4} =$$

$$5\frac{3}{8} - 2\frac{5}{8} =$$

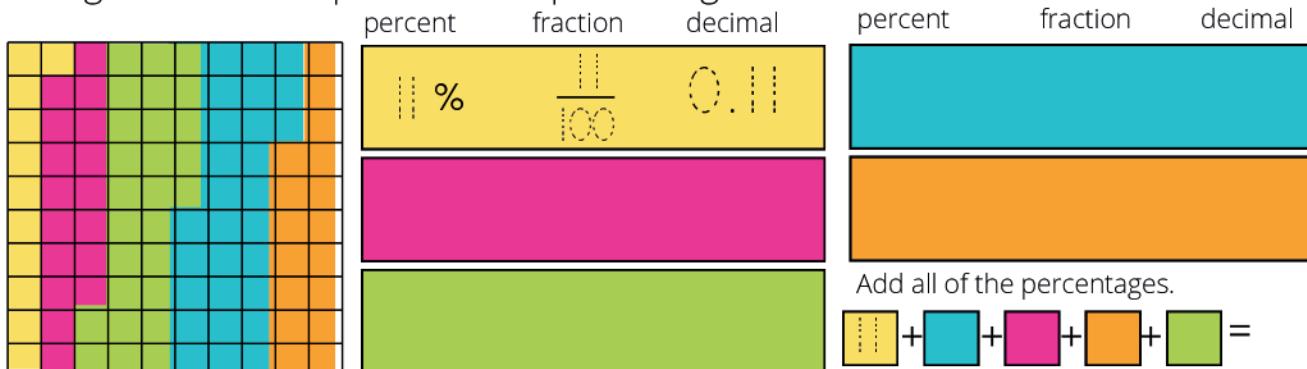
Find the missing fractions to make each number sentence true.

$$\frac{1}{4} + \boxed{\frac{2}{4}} = \frac{3}{4}$$

$$\boxed{\phantom{\frac{1}{1}}} + \frac{1}{5} = \frac{4}{5}$$

$$\frac{1}{3} + \boxed{\phantom{\frac{1}{1}}} = \frac{3}{3} = 1$$

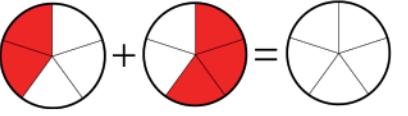
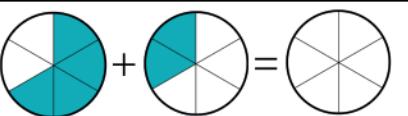
$$\boxed{\phantom{\frac{1}{1}}} + \frac{1}{6} = \frac{5}{6}$$

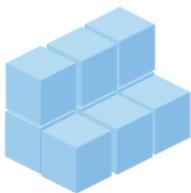

$$\boxed{\phantom{\frac{1}{1}}} - \frac{3}{8} = \frac{1}{8}$$

$$\boxed{\phantom{\frac{1}{1}}} + \frac{3}{2} = \frac{9}{2} = 4\frac{1}{2}$$

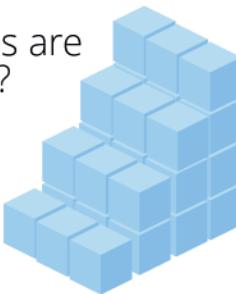
$$\frac{7}{8} - \boxed{\phantom{\frac{1}{1}}} = \frac{3}{8}$$

$$\frac{2}{6} + \boxed{\phantom{\frac{1}{1}}} = \frac{4}{6}$$

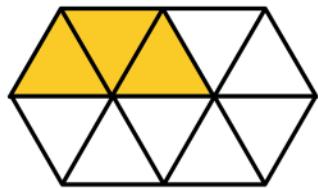


This grid has 100 squares. What percentage is each color?

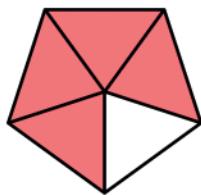

Why do the percentages of each color all add up to 100%? _____

Do percentages always add up to 100%? _____


Add the fractions. Color the sum of the two fraction pictures in each space.

$\frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$	$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1$	$\frac{2}{5} + \frac{3}{5} = \frac{5}{5} = 1$
$\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$	$\frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$	$\frac{4}{6} + \frac{2}{6} = \frac{6}{6} = 1$


How many cubes are in this structure?


How many cubes are in this structure?

Write the part of this hexagon that is NOT shaded as a fraction and a decimal. What is a hexagon?

Write the shaded part of this pentagon as a fraction and a decimal. What is a pentagon?

If I pay for my meal with a ten dollar bill, what is my change? (2.51)

MENU	
pizza	\$5.49
burger	\$3.59
hot dog	\$2.99
fries	\$2.79
soda	\$2.19

#24 Date _____

List all of the prime numbers less than 50. Hint: There are 15 of them.

List the factors of:

12: 1, 2, 3, 4, 6, 12

15: 1, 3, 5, 15

18: 1, 2, 3, 6, 9, 18

21: 1, 3, 7, 21

24: 1, 2, 3, 4, 6, 8, 12, 24

36: 1, 2, 3, 4, 6, 9, 12, 18, 36

Name the greatest common factor (GCF) of:

12 and 15

3

12 and 36

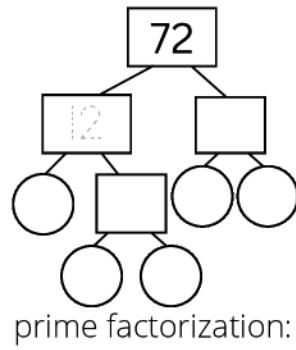
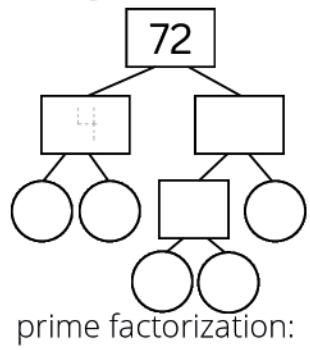
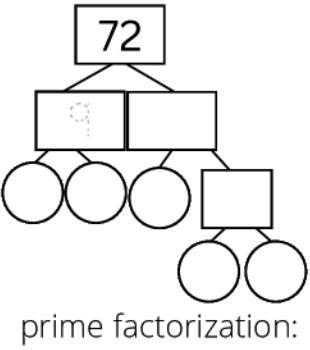
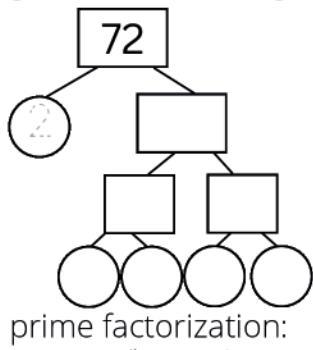
18 and 21

3

24 and 36

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{12}{15} \div \frac{3}{3} = \frac{4}{5}$$





$$\frac{12}{36} \div \frac{1}{1} =$$

$$\frac{18}{21} \div \frac{1}{1} =$$

$$\frac{24}{36} \div \frac{1}{1} =$$

List the **factors** of 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Factor the number in the top box of each factor tree. The composite numbers go in the rectangles and the prime numbers go in the circles.

Find the quotients.

$$23 \overline{)644}$$

$$19 \overline{)494}$$

$$34 \overline{)918}$$

$$21 \overline{)504}$$

$$28 \overline{)784}$$

$$8 \overline{)626.00}$$

$$6 \overline{)496.50}$$

$$4 \overline{)261.40}$$

$$7 \overline{)639.24}$$

Your scores were 139, 95 and 111. How much higher was your highest score than your lowest score?

How many inches tall are you if you are 5' 3" tall?

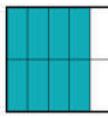
The total price of 3 pounds of apples was \$5.37. What was the price per pound?

How many yards is one half of a mile?

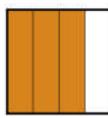
#25 Date _____

Find equivalent fractions.

$$\frac{1}{3} \times \frac{2}{2} = \frac{1}{3} \times \frac{3}{3} = \frac{1}{3} \times \frac{4}{4} = \frac{1}{3} \times \frac{5}{5} = \frac{1}{3} \times \frac{6}{6} = \frac{6}{18}$$

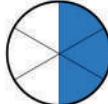

$$\frac{24}{36} \div \frac{2}{2} = \frac{12}{18} \quad \frac{24}{36} \div \frac{3}{3} = \frac{24}{36} \div \frac{4}{4} = \frac{24}{36} \div \frac{6}{6} = \frac{24}{36} \div \frac{12}{12} =$$

Find three equivalent fractions for each fraction.

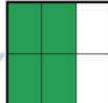

$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{8}{12} \quad \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16} \quad \frac{4}{5} = \frac{8}{10} = \frac{12}{15} = \frac{16}{20}$$

Draw lines to match the equivalent fractions.

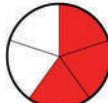
$$\frac{8}{12}$$

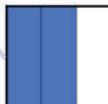

$$\frac{1}{4}$$

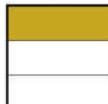
$$\frac{12}{20}$$


$$\frac{4}{8}$$

$$\frac{2}{6}$$

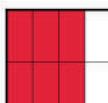

$$\frac{16}{20}$$

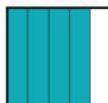

$$\frac{4}{16}$$

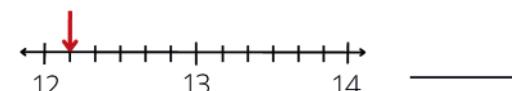
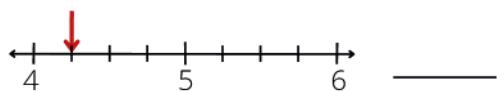
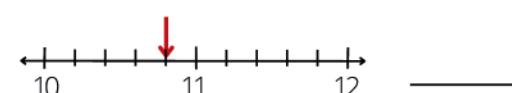
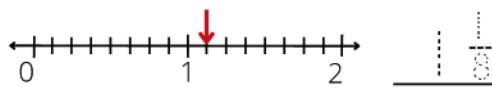

$$\frac{9}{15}$$

$$\frac{12}{15}$$

$$\frac{4}{12}$$


$$\frac{2}{4}$$


$$\frac{12}{16}$$





$$\frac{9}{12}$$

$$\frac{6}{9}$$

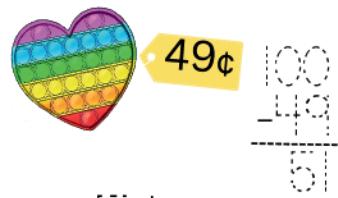
To which mixed number does each arrow point?

Use words to write $32\frac{5}{8}$ _____

Use words to write $57\frac{7}{10}$ _____

Use words to write 43.7 _____

What is $\frac{3}{4}$ of 36? 27 $36/4 = 9$ Divide 36 into four equal parts.
 $9 \times 3 = 27$ You have 3 of those parts.


What is $\frac{5}{8}$ of 40?

What is $\frac{2}{3}$ of 27?

What is $\frac{1}{4}$ of 28?

What is $\frac{4}{5}$ of 32?

How much change will you receive if you pay for each item with \$1.00? Write each amount using a cent sign then a dollar sign. (3.18)

51¢
\$0.51

21¢

18¢

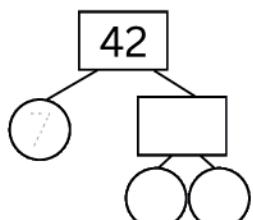
#26 Date _____

Rename the fractions so they have a common denominator, then add or subtract them. Reduce the answer to its simplest form.

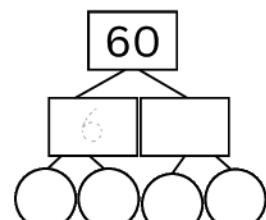
$$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1 \quad \frac{\cancel{1}^2}{\cancel{2}^4} + \frac{3}{4} = \quad \frac{3}{8} + \frac{1}{4} = \quad \frac{5}{6} + \frac{2}{3} =$$

$$\frac{5}{6} - \frac{\cancel{2}^4}{\cancel{3}^6} = \quad \frac{2}{3} - \frac{1}{6} = \quad \frac{1}{2} - \frac{1}{4} = \quad \frac{5}{6} - \frac{2}{3} =$$

Help each animal find its bed by drawing a line from the fraction in its box through all of the equivalent fractions until you reach the other side.


$\frac{1}{3}$	$\frac{7}{21}$	$\frac{5}{15}$	$\frac{3}{6}$	$\frac{3}{9}$	$\frac{6}{18}$	$\frac{9}{27}$	$\frac{8}{24}$	$\frac{9}{45}$	
$\frac{1}{4}$	$\frac{4}{16}$	$\frac{5}{10}$	$\frac{4}{12}$	$\frac{2}{4}$	$\frac{9}{18}$	$\frac{7}{35}$	$\frac{8}{40}$	$\frac{2}{6}$	
$\frac{1}{2}$	$\frac{4}{8}$	$\frac{9}{36}$	$\frac{4}{20}$	$\frac{5}{25}$	$\frac{6}{30}$	$\frac{7}{14}$	$\frac{6}{24}$	$\frac{7}{28}$	
$\frac{1}{5}$	$\frac{2}{10}$	$\frac{3}{15}$	$\frac{5}{20}$	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{8}{32}$	$\frac{8}{16}$	$\frac{6}{12}$	

List the **factors** of 42: 1, 2, 3, 6, 7, 14, 21, 42


List the **factors** of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

What is the Greatest Common Factor (GCF) of 42 and 60? _____

Factor the number in the top box of each factor tree.

prime factorization: _____

prime factorization: _____

Reduce this fraction to its simplest form two different ways.

$$\frac{42}{60} \quad \frac{42 \div \text{GCF}}{60 \div \text{GCF}} =$$

Cancel common factors from the numerators and denominators.

$$\frac{\text{prime factorization of 42}}{\text{prime factorization of 60}} =$$

Draw three circles. Divide one circle into fourths, one into fifths and one into sixths. Shade one piece of each circle. Beneath each circle, write two fractions: the part shaded and the part not shaded. Add both fractions for each circle.

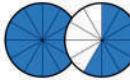
Convert the mixed numbers to improper (top heavy) fractions. (4.25)

$$1\frac{1}{5} = \frac{6}{5}$$

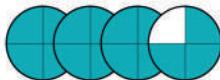
$$1\frac{2}{3} =$$

$$3\frac{7}{8} =$$

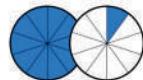
$$1\frac{5}{6} =$$

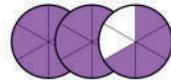


$$2\frac{3}{4} =$$



Convert the improper fractions to mixed numbers.


$$\frac{19}{12} = 1\frac{7}{12}$$


$$\frac{15}{4} =$$

$$\frac{11}{10} =$$

$$\frac{16}{6} =$$

$$\frac{4}{3} =$$

Fill in the blanks to complete each chart. (5.12)

	x30	x300	x3000
3	90	900	9000
6			
9			

	÷3	÷30	÷300	÷3000
3				
6	2	0.2	0.02	0.002
9				

	x4	x40	x400
4	16	160	1600
8			
12			

	÷4	÷40	÷400	÷4000
4	1	0.1	0.01	0.001
8	2			
12	3			

#27 Date _____

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{12}{16} \div \frac{1}{1} = \frac{24}{30} \div \frac{1}{1} = \frac{18}{36} \div \frac{1}{1} = \frac{24}{48} \div \frac{1}{1} =$$

List the first six multiples of:

$$2, \underline{4}, \underline{6}, \underline{8}, \underline{10}, \underline{12}, \underline{14}$$

$$3, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}$$

$$4, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}$$

$$5, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}$$

$$12, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}$$

$$15, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}, \underline{\quad}$$

Name the LEAST common multiple (LCM) of: (4.19)

$$2 \text{ and } 3 \quad 2 \text{ and } 5 \quad 2 \text{ and } 4$$

$$\underline{\quad} \quad \underline{\quad} \quad \underline{\quad}$$

$$3 \text{ and } 5 \quad 3 \text{ and } 4 \quad 4 \text{ and } 12$$

$$\underline{\quad} \quad \underline{\quad} \quad \underline{\quad}$$

Rename the fractions so they have a common denominator, then add or subtract. Reduce the answer to its simplest form.

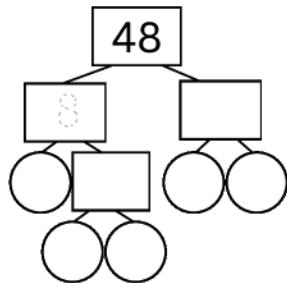
$$\frac{1}{2} + \frac{2}{3} = \frac{7}{6} = 1\frac{1}{6} \quad \frac{1}{3} + \frac{1}{4} = \frac{3}{5} + \frac{3}{4} = \frac{1}{3} + \frac{1}{2} =$$

$$\frac{2}{3} - \frac{1}{2} = \frac{1}{6} \quad \frac{4}{5} - \frac{1}{2} = \frac{1}{3} - \frac{1}{4} = \frac{3}{5} - \frac{1}{3} =$$

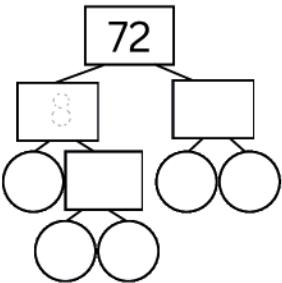
$$2\frac{1}{2} + 1\frac{1}{4} = 3\frac{1}{2} + 2\frac{2}{3} = 1\frac{3}{4} + 1\frac{1}{3} =$$

$$3\frac{1}{4} - 1\frac{1}{3} = 2\frac{1}{2} - 1\frac{3}{5} = 3 - 1\frac{1}{2} =$$

Grandma was born in 1953. How old will she be this year?


How old was she in the year 2000?

List the **factors** of 48: _____


List the **factors** of 72: _____

What is the Greatest Common Factor (GCF) of 48 and 72? _____

Factor the number in the top box of each factor tree. (5.24)

prime factorization: _____

prime factorization: _____

Reduce this fraction to its simplest form two different ways.

$$\frac{48}{72} \quad \frac{48 \div \text{GCF}}{72 \div \text{GCF}} =$$

Cancel common factors from the numerator and denominators.

$$\frac{\text{prime factorization of 48}}{\text{prime factorization of 72}} =$$

This is a tricky puzzle. What number does each letter represent? (3.59)

$$X + X - X = 9$$

$$X - Y = \boxed{}$$

$$X = \boxed{}$$

$$X + 5Y = 7^2$$

$$Z^2 = \boxed{}$$

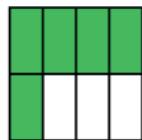
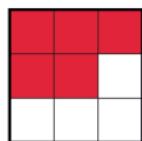
$$Y = \boxed{}$$

$$2Z - Z = 7$$

$$X + 1 = \boxed{}$$

$$Z = \boxed{}$$

$$X + Z + Y = \boxed{}$$



$$2Y = \boxed{}$$

Find the lowest common denominator (LCD) of each group of fractions. Then RENAME each fraction using the LCD. Then order the fractions from the least to the greatest. (4.19)

Fractions	$\frac{2}{6}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{1}{4}$
LCD _____					
Equivalent Fractions with LCD					
Order fractions least to greatest					

Fractions	$\frac{1}{4}$	$\frac{7}{9}$	$\frac{2}{3}$	$\frac{9}{12}$	$\frac{5}{6}$
LCD _____					
Equivalent Fractions with LCD					
Order fractions least to greatest					

#28 Date _____

Fraction Colored

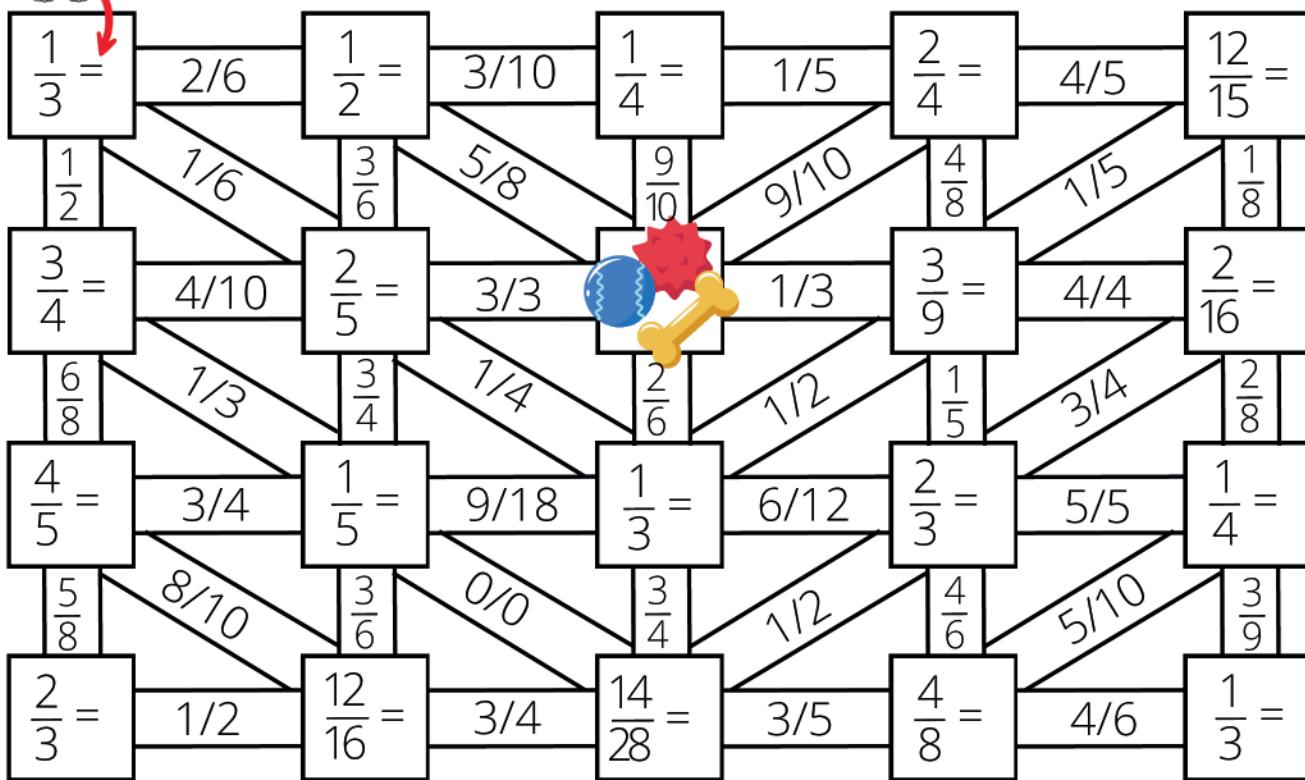
Not Colored

Add both fractions. Write the number sentence.

$$\frac{5}{9}$$

$$\frac{4}{9}$$

$$\frac{5}{9}$$


$$+$$

$$\frac{4}{9}$$

$$= \frac{9}{9} = 1$$

Help Fido find his toy. Match equivalent fractions to color a path through the maze. Circle the indeterminate fraction!

Find the missing fractions to make each number sentence true.

$$\frac{\cancel{1}^2}{4} + \frac{5}{8} = \frac{7}{8}$$

$$\boxed{} + \frac{1}{10} = \frac{4}{5}$$

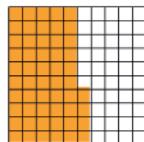
$$\frac{1}{3} + \boxed{} = 1\frac{1}{2}$$

$$\boxed{} + \frac{1}{6} = 1$$

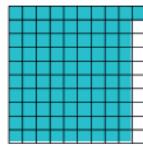
$$\boxed{} - \frac{1}{2} = \frac{1}{8}$$

$$\boxed{} + \frac{1}{3} = \frac{1}{2}$$

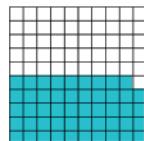
$$\frac{4}{5} - \boxed{} = \frac{1}{2}$$

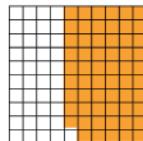

$$\frac{1}{3} + \boxed{} = \frac{4}{6}$$

$$1\frac{1}{3} + \boxed{} = 3\frac{1}{2}$$


$$3\frac{1}{4} - \boxed{} = 1\frac{2}{3}$$

$$2\frac{3}{8} - \boxed{} = 1\frac{3}{4}$$


Each block has 100 squares. Write the percentage, fraction and decimal for each.


$$54\% = \frac{54}{100} = 0.54$$

$$= \quad =$$

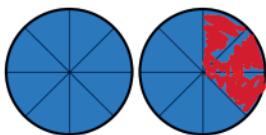
$$= \quad =$$

$$= \quad =$$

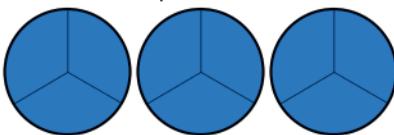
There are twelve pencils in the medium-sized box. The small box has half as many. The large box has five times as many pencils as the small box.

How many pencils are in the large box? _____

If I buy one box of each size, how many pencils will I have? _____



The small box of pencils costs \$1.80. The medium-sized box costs \$2.40. How much more per pencil do the pencils in the small box cost?


The large box costs \$3.00. What is the cost per pencil in the large box?

#29 Date _____

Subtract fractions from whole numbers. Draw pictures if it helps.

$$\cancel{2\frac{16}{8}} - \frac{3}{8} = \frac{13}{8} = 1\frac{5}{8}$$

$$\cancel{3\frac{9}{3}} - \frac{2}{3} =$$

$$1 - \frac{2}{5} =$$

$$3 - \frac{1}{3} =$$

$$2 - \frac{3}{4} =$$

$$4 - \frac{5}{6} =$$

$$2 - \frac{3}{8} =$$

$$1 - \frac{2}{3} =$$

$$1 - \frac{1}{4} =$$

$$4 - \frac{4}{5} =$$

$$3 - \frac{1}{2} =$$

Find the missing fractional subtrahend in each number sentence.

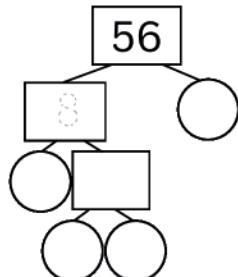
$$\text{Whole Pizza} - \frac{4}{8} = \text{Pizza with 4 blue slices}$$

$$\text{Whole Pizza} - \frac{7}{8} = \text{Pizza with 1 blue slice}$$

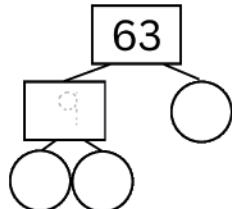
$$\text{Whole Pizza} - \frac{2}{3} = \text{Pizza with 1 blue slice}$$

$$\text{Whole Pizza} - \frac{11}{12} = \text{Pizza with 1 blue slice}$$

$$\text{Whole Pizza} - \frac{7}{8} = \text{Pizza with 1 blue slice}$$


$$\text{Whole Pizza} - \frac{11}{12} = \text{Pizza with 1 blue slice}$$

List the **factors** of 56: _____


List the **factors** of 63: _____

What is the Greatest Common Factor (GCF) of 56 and 63? _____

Factor the number in the top box of each factor tree. (5.24)

prime factorization: _____

prime factorization: _____

Reduce this fraction to its simplest form two different ways.

$$\frac{56}{63} \quad \frac{56 \div \text{GCF}}{63 \div \text{GCF}} =$$

Cancel common factors from the numerator and denominators.

$$\frac{\text{prime factorization of 56}}{\text{prime factorization of 63}} =$$

What is the square root of the product of sixteen and nine?

Estimate the product of 189 and 304 by rounding both factors to the nearest hundred before multiplying.

Find the quotients.

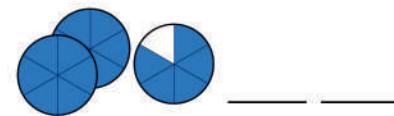
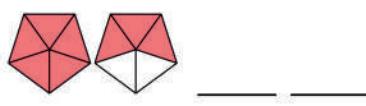
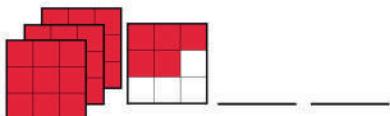
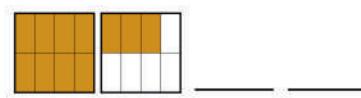
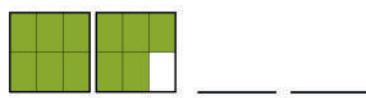
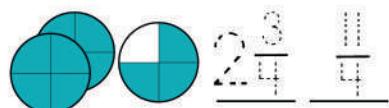
$$3 \overline{)204.75}$$

A long division problem for 204.75 divided by 3. The quotient is 68.25. The diagram shows the division process with colored boxes and arrows indicating the steps.

$$9 \overline{)850.50}$$

A long division problem for 850.50 divided by 9. The quotient is 94.5. The diagram shows the division process with colored boxes and arrows indicating the steps.

$$5 \overline{)411.70}$$







A long division problem for 411.70 divided by 5. The quotient is 82.34. The diagram shows the division process with colored boxes and arrows indicating the steps.

$$7 \overline{)545.79}$$

A long division problem for 545.79 divided by 7. The quotient is 77.97. The diagram shows the division process with colored boxes and arrows indicating the steps.

#30 Date _____

Name these fractions as mixed numbers and improper fractions.

Mixed number to improper fraction.

1. Multiply the denominator of the fraction by the whole number.
2. Add the numerator of the fraction.
3. The denominator remains the same.

$$\begin{array}{r} \text{add} \\ \cancel{3} \cancel{1} \\ \hline \cancel{6} \end{array} \quad 6 \times 3 = 18 \quad \begin{array}{r} 19 \\ \cancel{18} + 1 = 19 \\ \hline 6 \end{array}$$

$$3\frac{5}{6} = \underline{\underline{19}}$$

$$2\frac{1}{2} = \underline{\underline{\quad}}$$

$$\frac{13}{6} = \underline{\underline{2\frac{1}{6}}}$$

$$\frac{14}{4} = \underline{\underline{\quad}}$$

$$2\frac{1}{4} = \underline{\underline{\quad}}$$

$$1\frac{3}{5} = \underline{\underline{\quad}}$$

$$\frac{4}{3} = \underline{\underline{\quad}}$$

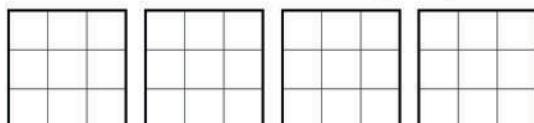
$$\frac{14}{5} = \underline{\underline{\quad}}$$

$$3\frac{5}{8} = \underline{\underline{\quad}}$$

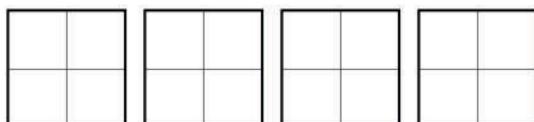
$$3\frac{4}{5} = \underline{\underline{\quad}}$$

$$\frac{18}{8} = \underline{\underline{\quad}}$$

$$\frac{9}{2} = \underline{\underline{\quad}}$$


$$1\frac{2}{3} = \underline{\underline{\quad}}$$

$$2\frac{1}{3} = \underline{\underline{\quad}}$$


$$\frac{5}{2} = \underline{\underline{\quad}}$$

$$\frac{7}{3} = \underline{\underline{\quad}}$$

Shade to show that $3\frac{1}{9}$ equals $\frac{28}{9}$.

Shade to show that $3\frac{3}{4}$ equals $\frac{15}{4}$.

Improper fraction to mixed number.

1. Divide the numerator by the denominator.

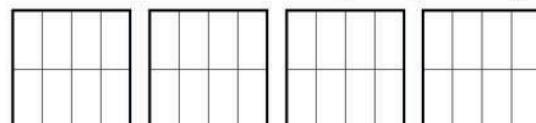
$$6 \overline{)19} \begin{array}{r} 3\frac{1}{6} \\ -18 \\ \hline 1 \end{array}$$

$$\frac{13}{6} = \underline{\underline{2\frac{1}{6}}}$$

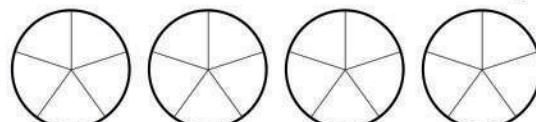
$$\frac{14}{4} = \underline{\underline{\quad}}$$

$$\frac{4}{3} = \underline{\underline{\quad}}$$

$$\frac{14}{5} = \underline{\underline{\quad}}$$


$$\frac{18}{8} = \underline{\underline{\quad}}$$

$$\frac{9}{2} = \underline{\underline{\quad}}$$


$$\frac{5}{2} = \underline{\underline{\quad}}$$

$$\frac{7}{3} = \underline{\underline{\quad}}$$

Shade to show that $3\frac{5}{8}$ equals $\frac{29}{8}$.

Shade to show that $3\frac{3}{5}$ equals $\frac{18}{5}$.

List the first six multiples of:

2, 4, 6, 8, 10, 12, 14

3, 6, 9, 12, 15, 18, 21

4, , , , , ,

5, , , , , ,

6, , , , , ,

9, , , , , ,

12, , , , , ,

Name the LEAST common multiple (LCM) of:

2 and 3

6

2 and 4

2 and 5

3 and 4

3 and 5

3 and 6

4 and 5

4 and 8

4 and 12

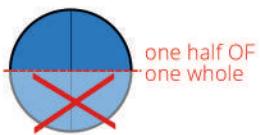
Add these fractions. You can only add fractions with common denominators.

1. Find the LEAST COMMON MULTIPLE of both denominators.

2. RENAME the fractions. Multiply each of them by ONE, to find their EQUIVALENT fractions.

3. Simplify your answer. No improper fractions.

$\frac{3}{5} + \frac{3}{5} = \frac{6}{5} = 1\frac{1}{5}$	$\frac{1}{4} + \frac{3}{8} =$	$\frac{1}{2} + \frac{1}{3} =$	$\frac{1}{4} + \frac{2}{3} =$
$\frac{2}{3} + \frac{1}{5} =$	$\frac{5}{6} + \frac{2}{3} =$	$\frac{1}{2} + \frac{3}{5} =$	$\frac{3}{4} + \frac{1}{5} =$

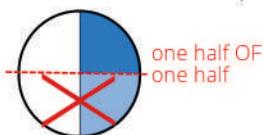

Subtract these fractions. Find a common denominator first.

$\frac{4}{6} - \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$	$\frac{1}{2} - \frac{1}{3} =$	$\frac{3}{5} - \frac{1}{2} =$	$\frac{4}{5} - \frac{1}{4} =$
$\frac{1}{2} - \frac{4}{9} =$	$\frac{5}{6} - \frac{1}{2} =$	$\frac{3}{4} - \frac{1}{3} =$	$\frac{4}{5} - \frac{2}{3} =$

#31 Date _____

Multiply fractions by fractions. Always simplify!

$$\frac{4}{4} \times \frac{1}{2} = \frac{4}{8} = \frac{1}{2}$$



simplify BEFORE multiplying

$$\frac{3}{5} \times \frac{1}{3} = \frac{1}{5}$$

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

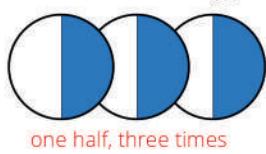
$$\frac{4}{5} \times \frac{1}{2} =$$

$$\frac{3}{4} \times \frac{1}{3} =$$

$$\frac{1}{2} \times \frac{2}{3} =$$

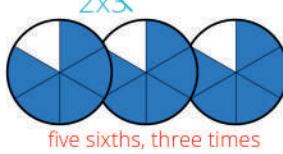
$$\frac{3}{8} \times \frac{1}{3} =$$

$$\frac{2}{5} \times \frac{5}{6} =$$

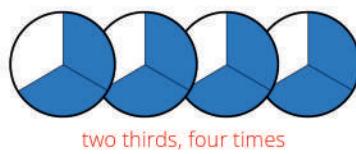

$$\frac{2}{9} \times \frac{3}{4} =$$

$$\frac{1}{8} \times \frac{4}{5} =$$

$$\frac{3}{5} \times \frac{5}{9} =$$


Multiply fractions by WHOLE numbers. Always simplify!

$$\frac{1}{2} \times 3\frac{3}{1} = \frac{3}{2}$$



simplify BEFORE multiplying

$$\frac{5}{6} \times 3\frac{3}{1} = \frac{5}{2} = 2\frac{1}{2}$$

$$\frac{2}{3} \times 4 =$$

simplify BEFORE multiplying

$$\frac{1}{3} \times 3\frac{3}{1} =$$

$$\frac{1}{4} \times 2 =$$

$$6 \times \frac{1}{4} =$$

$$\frac{3}{5} \times 2 =$$

$$\frac{2}{5} \times 5 =$$

$$4 \times \frac{1}{8} =$$

$$3 \times \frac{5}{12} =$$

$$\frac{5}{8} \times 4 =$$

Your family drove 1400 miles on a five-day trip to a family reunion. What was the average number of miles your family drove each day?

List the factors of:

10: 1, 2, 5, 10

12: 1, 2, 3, 4, 6, 12

15: 1, 3, 5, 15

18: 1, 2, 3, 6, 9, 18

20: 1, 2, 4, 5, 10, 20

24: 1, 2, 3, 4, 6, 8, 12, 24

Name the greatest common factor (GCF) of:

10 and 15

18 and 24

12 and 15

20 and 24

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{10}{15} \div \frac{5}{5} =$$

$$\frac{18}{24} \div \frac{6}{6} =$$

$$\frac{12}{15} \div \frac{3}{3} =$$

$$\frac{20}{24} \div \frac{8}{8} =$$

Find a common denominator, add the fractions then add the mixed numbers.

$$\begin{array}{r} 1\frac{2}{3} \\ + 2\frac{3}{4} \\ \hline \end{array}$$

$$\begin{array}{r} 2\frac{1}{4} \\ + 3\frac{1}{2} \\ \hline \end{array}$$

$$\begin{array}{r} 1\frac{2}{3} \\ + 4\frac{5}{6} \\ \hline \end{array}$$

$$\begin{array}{r} 3\frac{1}{4} \\ + 2\frac{1}{2} \\ \hline \end{array}$$

$$\begin{array}{r} 1\frac{7}{8} \\ + 3\frac{1}{4} \\ \hline \end{array}$$

Trace each term. Draw lines to match terms and definitions.

factor

- the smallest integer divisible by each of the given factors (LCM)

multiple

- a shared multiple of the denominators of two fractions

greatest common factor

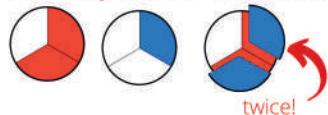
- divides another number evenly

least common multiple

- the product of a number and an integer

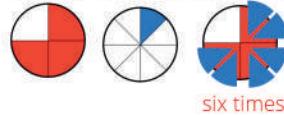
common denominator

- (GCF) the largest factor that divides the given integers evenly

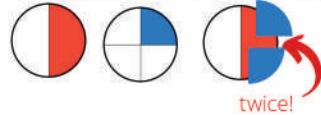

#32 Date _____

Divide fractions by fractions. Always simplify!

Never divide by a fraction, instead multiply by the reciprocal.


$$\frac{2}{3} \times \frac{1}{3} = \frac{6}{9} = 2$$

how many times will $1/3$ fit into $2/3$?


$$\frac{3}{4} \times \frac{1}{8} = \frac{3}{32} =$$

how many times will $1/8$ fit into $3/4$?

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times \frac{4}{1} =$$

how many times will $1/4$ fit into $1/2$?

$$\frac{2}{5} \div \frac{1}{5} =$$

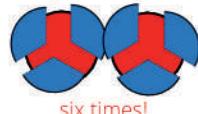
$$\frac{8}{10} \div \frac{1}{5} =$$

$$\frac{2}{3} \div \frac{1}{6} =$$

$$\frac{3}{4} \div \frac{1}{4} =$$

Divide whole numbers by fractions. Always simplify!

Never divide by a fraction, instead multiply by the reciprocal.


$$2 \times \frac{1}{2} = 1$$

how many times will $1/2$ go into 2?

$$2 \times \frac{1}{3} =$$

how many times will $1/3$ fit into 2?

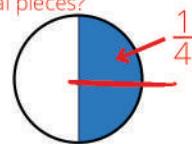
$$3 \div \frac{3}{8} =$$

how many times will $3/8$ fit into 3?

$$4 \div \frac{2}{5} =$$

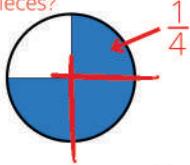
$$1 \div \frac{5}{6} =$$

$$2 \div \frac{7}{8} =$$

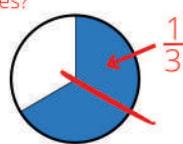

$$1 \div \frac{1}{4} =$$

Divide fractions by whole numbers. Always simplify!

Multiply by the reciprocal.


$$\frac{1}{2} \times 2\frac{1}{2} = \frac{1}{4}$$

How much is $1/2$ divided into two equal pieces?


$$\frac{3}{4} \times 3\frac{1}{3} =$$

How much is $3/4$ divided into three equal pieces?

$$\frac{2}{3} \times 2\frac{1}{2} =$$

How much is $2/3$ divided into two equal pieces?

$$\frac{2}{5} \div 2 =$$

$$\frac{1}{2} \div 5 =$$

$$\frac{2}{3} \div 4 =$$

$$\frac{6}{8} \div 3 =$$

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS). (3.83)

$$\text{blue donut} = 3$$

$$\text{brown donut} = 5$$

$$\text{pink donut} = 9$$

$$\text{blue donut} - \text{blue donut} = -2$$

$$\text{blue donut} - \text{pink donut} = -6$$

$$\text{blue donut} \times \text{blue donut} = 18$$

$$\text{pink donut} \times \text{blue donut} = 27$$

$$\text{blue donut} + \text{blue donut} = 18$$

$$\text{pink donut}^2 = 81$$

$$(\text{pink donut} - \text{blue donut}) - \text{blue donut} = \text{blue donut}$$

$$\text{pink donut}^2 - 8 \times \text{pink donut} = \text{pink donut}$$

$$\text{pink donut} (\text{blue donut} + \text{blue donut}) = 72$$

You shared a chocolate bar equally with your brother. He gave half of what you gave him to his friend. What fraction did the friend get?

What percentage is that?

Trace then write each term, then draw a line to match each term to its definition. (3.59)

coefficient

• A letter or symbol that represents a number.

variable

• A number in front of a variable. It gets multiplied by the variable.

coefficient variable
 $5A = 20$

Math Rule:

When you have a VARIABLE and a COEFFICIENT together in a number sentence, they are multiplied together. You don't need a multiplication symbol.

Fill in the missing factors or products to complete each number sentence.

Find the value of the VARIABLE in each number sentence.

$$7 \times \boxed{} = 56$$

See? No multiplication symbol between the variable and the coefficient!

$$4 \times \boxed{} = 28$$

Color the COEFFICIENTS red and the VARIABLES green in these number sentences.

$$6 \times \boxed{} = 48$$

$$7X = 56$$

$$X = \underline{\hspace{2cm}}$$

$$5 \times \boxed{} = 45$$

$$4Y = 28$$

$$Y = \underline{\hspace{2cm}}$$

$$3 \times \boxed{} = 36$$

$$6Z = 48$$

$$Z = \underline{\hspace{2cm}}$$

$$5A = 45$$

$$A = \underline{\hspace{2cm}}$$

$$3B = 36$$

$$B = \underline{\hspace{2cm}}$$

#33 Date _____

Complete the chart.

- To convert a fraction to a decimal, divide the numerator by the denominator.
- To convert a decimal to a percent, multiply it by 100.
- Use shortcuts when the denominator is ten or a factor of ten.

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{10}$	0.1	10%
	$\frac{1}{2}$		

These denominators are factors of ten so we can easily rename them.

$$\frac{1 \times 2}{5 \times 2} = \frac{2}{10}$$

$$\frac{2 \times 2}{5 \times 2} = \frac{4}{10}$$

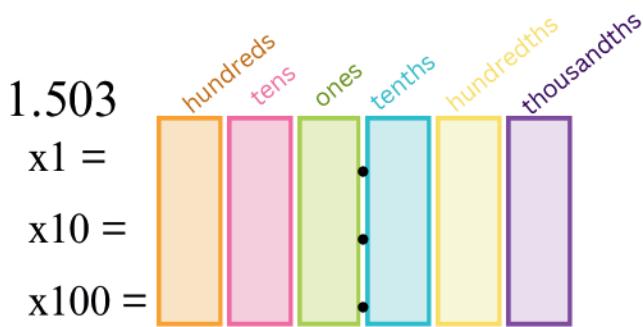
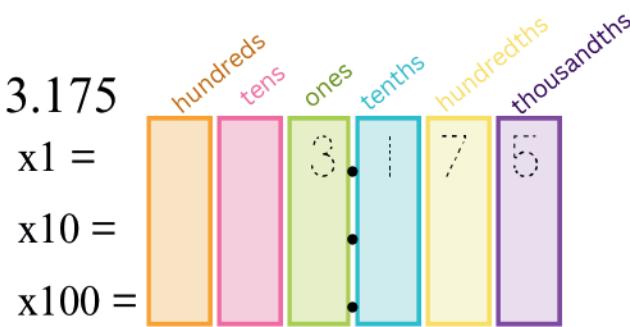
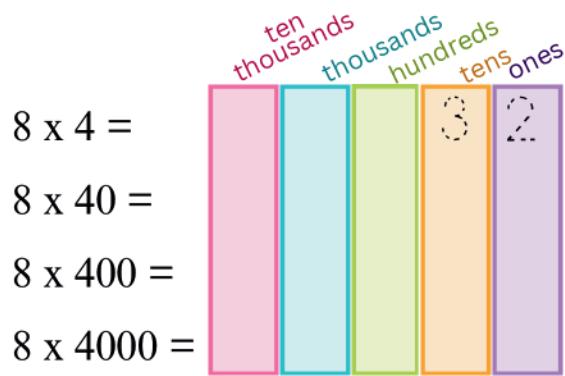
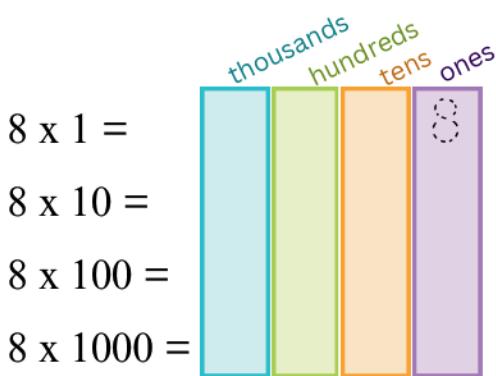
$$\frac{3 \times 2}{5 \times 2} = \frac{6}{10}$$

$$\frac{1 \times 5}{2 \times 5} = \frac{5}{10}$$

These denominators are not factors of ten so we have to divide the numerator by the denominator.

$$4 \overline{)1.00} \quad \begin{array}{r} 0.25 \\ -10 \\ \hline 00 \\ -00 \\ \hline 00 \end{array}$$

$$4 \overline{)3.00} \quad \begin{array}{r} 0.75 \\ -30 \\ \hline 00 \\ -00 \\ \hline 00 \end{array}$$





$$8 \overline{)5.000} \quad \begin{array}{r} 0.625 \\ -40 \\ \hline 00 \\ -00 \\ \hline 00 \end{array}$$

How much is $\frac{2}{3}$ of one dozen?

Estimate the product of 51 and 38 by rounding the numbers to the nearest ten before you multiply.

What is the product of $\frac{2}{3}$ and its reciprocal?

Find the products. (5.12)

$$12 \times 10 = \underline{\hspace{2cm}}$$

$$12 \times 30 = \underline{\hspace{2cm}}$$

$$12 \times 50 = \underline{\hspace{2cm}}$$

$$12 \times 100 = \underline{\hspace{2cm}}$$

$$12 \times 300 = \underline{\hspace{2cm}}$$

$$12 \times 500 = \underline{\hspace{2cm}}$$

$$12 \times 1000 = \underline{\hspace{2cm}}$$

$$12 \times 3000 = \underline{\hspace{2cm}}$$

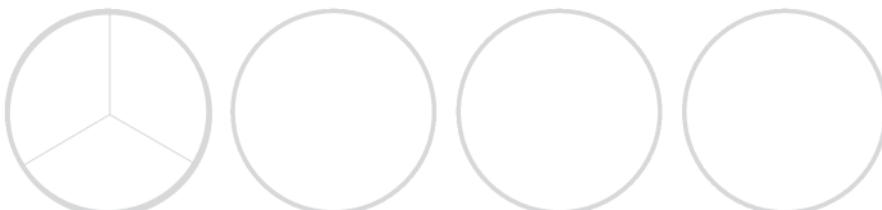
$$12 \times 5000 = \underline{\hspace{2cm}}$$

$$3.377 \times 10 = \underline{\hspace{2cm}}$$

$$52.13 \times 10 = \underline{\hspace{2cm}}$$

$$3.377 \times 100 = \underline{\hspace{2cm}}$$

$$52.13 \times 100 = \underline{\hspace{2cm}}$$


$$3.377 \times 1000 = \underline{\hspace{2cm}}$$

$$52.13 \times 1000 = \underline{\hspace{2cm}}$$

$3\frac{2}{3}$

add $3 \times 3 = 9$
multiply $9 + 1 = 11$ $\frac{11}{3}$

Divide and shade circles to show that $3\frac{2}{3}$ equals $\frac{11}{3}$.

#34 Date _____

To which decimal number does each arrow point?

a 5.4

c _____

e _____

g _____

i _____

b _____

d _____

f _____

h _____

j _____

Use comparison symbols (<, >, =) to compare these decimal numbers.

0.008 < 0.8

0.03 < 0.3

0.6 > 0.06

0.2 > 0.02

0.04 = 0.04

0.1 = 0.1

0.05 > 0.005

0.009 < 0.09

0.07 > 0.007

quantity means
parentheses $2(7 + 5) =$

What is twice the quantity of seven and five?

What is three eighths of sixty-four?

A dime is what fraction of a dollar? What decimal? What percent?

Write the mixed numbers as decimals.

$$3\frac{9}{10} = \underline{3.9}$$

$$3\frac{9}{100} = \underline{3.09}$$

$$3\frac{9}{1000} = \underline{3.009}$$

$$1\frac{125}{1000} = \underline{\quad}$$

$$5\frac{53}{100} = \underline{\quad}$$

$$1\frac{2}{1000} = \underline{\quad}$$

$$5\frac{9}{10} = \underline{\quad}$$

$$2\frac{3}{10} = \underline{\quad}$$

$$4\frac{4}{100} = \underline{\quad}$$

Find the sums and differences. Find a common denominator. Remember to simplify!

$$\cancel{12} \cancel{2} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{1}{2} - \frac{1}{3} =$$

$$\frac{1}{3} + \frac{3}{4} =$$

$$\frac{4}{5} - \frac{1}{2} =$$

Simplify BEFORE multiplying

Find the products. Multiply straight across. Always simplify! whenever you can.

$$\cancel{\frac{1}{3}} \times \frac{3}{4} = \frac{1}{4}$$

$$\frac{1}{3} \times \frac{3}{5} =$$

$$\frac{1}{2} \times \frac{1}{4} =$$

$$2 \times \frac{1}{2} =$$

$$\frac{1}{3} \times 3 =$$

$$\frac{1}{4} \times \frac{4}{5} =$$

$$\frac{4}{5} \times \frac{3}{4} =$$

$$\frac{3}{8} \times \frac{4}{5} =$$

Find the quotients. Always simplify!

Simplify BEFORE multiplying whenever you can.

Never divide by a fraction, instead multiply by the reciprocal.

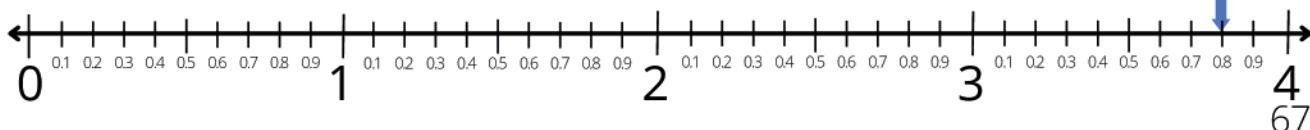
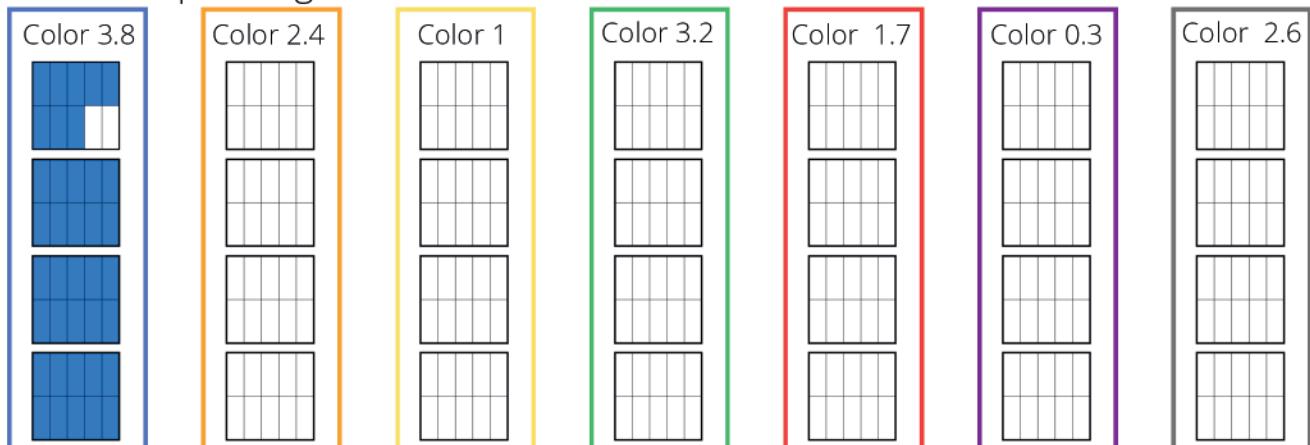
$$\frac{3}{5} \times \cancel{\frac{1}{5}} = 3$$

$$\frac{1}{4} \div \frac{3}{4} =$$

$$3 \div \frac{1}{3} =$$

$$\frac{1}{2} \div \frac{1}{4} =$$

How many times will 1/5 go into 3/5?



$$6 \div \frac{1}{2} =$$

$$\frac{5}{8} \div \frac{1}{4} =$$

$$\frac{5}{6} \div 5 =$$

$$\frac{7}{12} \div \frac{1}{3} =$$

Color the decimal number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below.

#35 Date _____

FUNCTION MACHINE

Send each x value through the function machine. Figure out each function rule and complete the y column of the function table.

$y = 3x$	
x	y
1	3
2	6
3	9
4	12
5	15
6	18

$y = x + 2$	
x	y
1	3
2	4
3	5
4	6
5	7
6	8

x	y
1	0
2	1
3	2
4	3
5	4
6	5

x	y
1	2
2	3
3	4
4	5
5	6
6	7

x	y
1	2
2	4
3	6
4	8
5	10
6	12

x	y
1	0
2	0
3	0
4	0
5	0
6	0

Use the provided function to complete the outputs in the y column.

$y = 10x$	
x	y
1	10
2	20
3	30
4	40
5	
6	
7	
8	
9	
10	

$y = x/2$	
x	y
1	1/2
2	1
3	
4	
5	
6	
7	
8	
9	
10	

$y = x - 5$	
x	y
1	-4
2	-3
3	
4	
5	
6	
7	
8	
9	
10	

$y = x^2$	
x	y
1	1
2	4
3	
4	
5	
6	
7	
8	
9	
10	

$y = x/10$	
x	y
1	0.1
2	0.2
3	
4	
5	
6	
7	
8	
9	
10	

$y = 2x - 1$	
x	y
1	2
2	3
3	5
4	
5	
6	
7	
8	
9	
10	

WORD PROBLEMS

What is the square root of the sum of seven and nine?

What is four fifths of 45?

How many dimes is fifty percent of a dollar?

Convert these mixed numbers to decimals. Rename the fractional part with a denominator of ten or one hundred.

$$3\frac{1}{2} = 3.5$$

$$\frac{1}{2} = \frac{5}{10}$$

$$1\frac{1}{3} =$$

$$\begin{array}{r} 0.333 \\ 3 \overline{) 1.000} \\ -9 \\ \hline 10 \\ -9 \\ \hline 10 \\ -9 \\ \hline 1 \end{array} \quad \begin{array}{r} 0.375 \\ 8 \overline{) 3.000} \\ -24 \\ \hline 60 \\ -56 \\ \hline 40 \\ -40 \\ \hline 0 \end{array}$$

$$2\frac{3}{4} =$$

$$4\frac{1}{4} =$$

$$1\frac{2}{5} =$$

$$\frac{2}{5} = \frac{4}{10}$$

$$2\frac{3}{8} =$$

Fill in the missing factors or products to complete each number sentence.

$$5 \times \boxed{} = 20$$

$$7 \times \boxed{} = 56$$

$$8 \times \boxed{} = 72$$

$$6 \times \boxed{} = 48$$

$$8 \times \boxed{} = 32$$

$$7 \times \boxed{} = 49$$

$$6 \times \boxed{} = 42$$

Color the COEFFICIENTS red and the VARIABLES green in these number sentences.

No multiplication symbols are needed between the variable and the coefficient!

Find the value of the VARIABLE in each number sentence.

$$5A = 20 \quad A = \underline{\hspace{2cm}}$$

$$7B = 56 \quad B = \underline{\hspace{2cm}}$$

$$8C = 72 \quad C = \underline{\hspace{2cm}}$$

$$6X = 48 \quad X = \underline{\hspace{2cm}}$$

$$8Y = 32 \quad Y = \underline{\hspace{2cm}}$$

$$7Z = 49 \quad Z = \underline{\hspace{2cm}}$$

$$6T = 42 \quad T = \underline{\hspace{2cm}}$$

How many dimes are in \$4.00?

How many quarters are in \$4.00?

If 3 toothbrushes cost \$2.55, how much will 4 toothbrushes cost?

#36 Date_____

Draw a picture to help you solve each word problem.

The coach organized 48 players into 8 teams with the same number of players on each team. How many players are on each team?

The bike you want costs \$497.57. You have \$112.08 in your bank and you just earned \$55 babysitting. How much do you still need?

You bought five movie tickets for \$14.35 each. How much did you spend?

Each package of fruit snacks holds 6 pieces. A box has 24 packages. How many pieces are in each box?

How many years is five centuries?

Your dad caught $\frac{1}{3}$ of a dozen fish and you caught two fish. How many did you catch altogether?

If 1 pie is shared equally between 5 people, each person will get what fraction of the pie?

You are going to run a 13-mile relay race with three friends. If you divide the distance equally, how many miles (mixed number) will you each run?

Order these numbers from smallest to largest. (5.34)

13.4 14.3 1.34 1.43

smallest _____ largest

2.71 7.12 1.27 1.72

smallest _____ largest

5.37 5.73 5.07 5.007

smallest _____ largest

Compare these numbers (<, >, =)

1.251 12.51

8.244 8.245

23.417 23.471

7.191 7.119

5.215 52.15

2.684 26.84

FAMILY SUPER SUNDAES

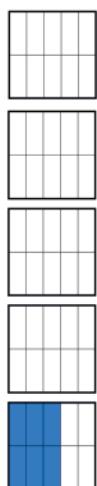
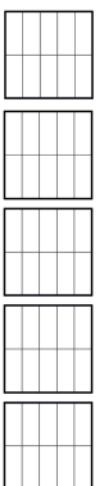
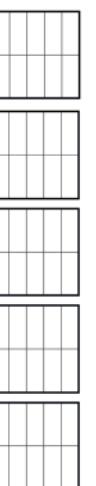

each scoop of ice cream	\$1.29
whipped cream	\$0.99
sauce (chocolate, caramel)	\$0.78
cookie	\$0.59
waffle cone	\$1.05
waffle bowl	\$1.99

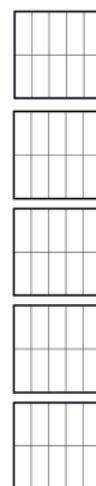
Figure out the cost of your order:
3 scoops of ice cream in a waffle bowl,
topped with whipped cream and
chocolate sauce, with 2 cookies.



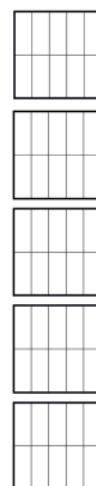
Color the decimal number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below. (4.35)


Color 0.6

Color 3.4


Color 2

Color 1.5


Color 4.1

Color 4.9

Color 1.3

#37 Date _____

Draw a picture to help you solve each word problem.

Peter was 14-years-old, Edmund was 3 years younger than Peter and Lucy was two years younger than Edmund. If Susan was 4 years older than Lucy, how old was she?

The White Witch gave Edmund and Lucy 30 pieces of turkish delight each. They wanted to share the candy with Susan. How many pieces did they each get if they divided the candy equally between three people?

The bench was 8 miles from the lamp post. It was one fourth of the way from the lamp post to Cair Paravel. What was the distance from the lamp post to Cair Paravel?

Playing hide-and seek, Lucy had to search 18 rooms. If Edmund shared the job equally with her, how many rooms did each of them search?

The stone table was made of 125 stones in three colors: grey, brown and white. If there were 48 grey stones and 34 brown stones, how many white stones did the table contain?

The door in the back of the wardrobe was 18 inches wide by 36 inches tall. What was its area?

If each of the Pevensie children had two pairs of shoes in the wardrobe, how many individual shoe were there?

One eighth of the 72 trees in the forest were not covered in snow. How many of the trees were covered in snow? What fraction of the trees were covered?

Use the menu prices to add up the cost of each meal. Find each customer's change if they pay with a \$20.00 bill. Line up the decimals! (4.39)

SANDWICH TRUCK	
Club	\$4.49
BLT	\$4.89
Ham	\$3.75
Cheese	\$4.99
Veggie	\$3.98
Fries	\$3.77
Soda	\$2.79
Ice cream	\$4.54

$$\begin{array}{r}
 4.89 \\
 3.77 \\
 + 2.79 \\
 \hline
 \end{array}
 \quad
 \begin{array}{r}
 20.00 \\
 - \\
 \hline
 \end{array}$$

Draw two horizontal line segments, parallel to each other. Draw two oblique line segments, parallel to each other, crossing both horizontal line segments. Color the bounded area. What shape did you draw? Name it two ways.

Draw a pair of horizontal, parallel line segments. Make the lower segment longer. Connect the ends of the segments with oblique line segments, to make a shape. Name it two ways.

#38 Date _____

Color the fraction circles. Convert each fraction to its decimal and percent. Round decimals to the hundredth place. Use whole number percentages.

Is the denominator a factor of 10 or 100?

No. Divide the numerator by the denominator.

$$8 \overline{)1.000}$$

0.125

8) 1.000
- 8

20
- 16

40
- 40

0

$$8 \overline{)3.000}$$

0.375

8) 3.000
- 8

20
- 16

40
- 40

0

Yes. Use the butterfly method to rename it.

$$\frac{1}{2} = \frac{10}{20}$$

1x10=10 2x?=10

$$\frac{1}{4} = \frac{100}{400}$$

1x100=100 4x?=100

$$8 \overline{)5.000}$$

0.625

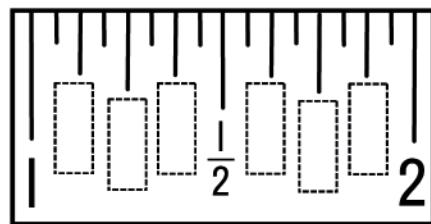
8) 5.000
- 8

40
- 40

0

$$8 \overline{)7.000}$$

0.875


8) 7.000
- 8

100
- 80

20
- 16

40
- 40

0

$$\frac{3}{4} = \frac{300}{400}$$

3x100=300 4x?=300

Visual Fraction		Decimal	Percent
	$\frac{1}{8}$	0.13	13%
	$\frac{1}{4}$		
	$\frac{3}{8}$		
	$\frac{1}{2}$		
	$\frac{5}{8}$		
	$\frac{3}{4}$		
	$\frac{7}{8}$		
	$\frac{8}{8}$		

Add the missing fractions to this section of ruler.

Draw a quadrilateral with one pair of horizontal line segments and one pair of vertical line segments. What is it called?

A playing field that has an area of 500 square yards is 100 yards long. How wide is it?

What is its perimeter?

A yard is 3 feet. A foot is 12 inches. How many inches is one fourth of a yard? What percent of 1 yd. is that?

Write the largest odd number possible using the digits 4, 5 and 7 once each.

Add or subtract. Then convert both fractions to decimals and add or subtract.

$$\frac{12}{24} + \frac{1}{4} = \frac{3}{4} \quad \frac{0.5}{+ 0.25} \quad \underline{0.75}$$

$$\frac{3}{4} - \frac{1}{2} =$$

Both denominators are factors of 10 $\frac{4}{5} - \frac{1}{2} =$

$$\underline{0.5} + \underline{0.25} = \underline{0.75}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

$$\frac{3}{5} + \frac{1}{10} =$$

$$\frac{3}{4} + \frac{1}{2} =$$

$$\frac{7}{10} - \frac{1}{2} =$$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

Find the products. Multiply straight across. Always simplify! Simplify BEFORE multiplying whenever you can.

$$\cancel{\frac{3}{5}} \times \frac{5}{8} = \frac{3}{8}$$

$$\frac{1}{2} \times \frac{2}{5} =$$

$$\frac{1}{5} \times 4 =$$

$$\frac{1}{3} \times \frac{1}{2} =$$

$$\frac{2}{5} \times \frac{3}{4} =$$

$$1 \times \frac{1}{2} =$$

$$\frac{1}{2} \times \frac{4}{5} =$$

$$\frac{3}{8} \times \frac{4}{5} =$$

Find the quotients. Always simplify!

Simplify BEFORE multiplying whenever you can.

Never divide by a fraction, instead multiply by the reciprocal.

$$\frac{3}{8} \times \cancel{\frac{1}{4}} = \frac{3}{8}$$

$$\frac{1}{4} \div \frac{3}{4} =$$

$$\frac{5}{8} \div \frac{1}{4} =$$

$$\frac{3}{12} \div \frac{1}{4} =$$

How many times will $1/4$ go into $3/8$?

$$6 \div \frac{1}{2} =$$

$$\frac{5}{6} \div 5 =$$

$$1 \div \frac{1}{3} =$$

$$\frac{3}{4} \div 2 =$$

#40 Date _____

Write each amount of money in two forms:

Nineteen cents

One dollar and two cents

Your mom bought 7 cans of black beans for 89 cents each. What was the cost of all 7 cans? Write the product in both forms.

What is the total cost of a \$12.85 book and a \$1.74 notebook.

What is the total price of 4 cartons of ice cream that cost \$3.20 each?

How many cents is $\frac{3}{5}$ of a dollar?

Rewrite these amounts in dollar form and stack them, lining them up by decimal point, to add.

\$9.47 + \$0.35 + 18¢ + \$11.99 + 3¢ + \$15

Choose three toys to buy. Write the amounts in dollar form and stack the prices, lining up the decimal points, to add them. How much change will you get if you pay with a \$20?

You rode your bike two miles in 15 minutes. It took your mom 20 minutes to ride the same distance. Who is faster?

Your friend skated 24 laps at the rink while you skated 21. Who skated faster?

Add or subtract. Then convert both fractions to decimals and add or subtract.

$$\frac{12}{50} + \frac{15}{20} = \frac{7}{10} + \frac{0.5}{0.5} = \underline{0.7}$$

$$\underline{0.2} + \underline{0.5} = \underline{0.7}$$

$$\frac{3}{5} - \frac{1}{2} =$$

$$\underline{\quad} - \underline{\quad} = \underline{\quad}$$

$$\frac{4}{5} + \frac{1}{2} =$$

$$\underline{\quad} + \underline{\quad} = \underline{\quad}$$

Find the correct operator (+, -, \times , \div) to make each number sentence true.

$$\frac{3}{5} \times \frac{5}{8} = \frac{3}{8}$$

$$\frac{1}{3} \times \frac{2}{3} = \frac{1}{2}$$

$$\frac{1}{5} \times \frac{1}{5} = \frac{2}{5}$$

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$3 \times \frac{1}{2} = 6$$

$$3 \times \frac{1}{2} = 1\frac{1}{2}$$

$$3 \times \frac{1}{2} = 2\frac{1}{2}$$

$$3 \times \frac{1}{2} = 3\frac{1}{2}$$

$$\frac{2}{3} \times \frac{1}{4} = \frac{5}{12}$$

$$\frac{2}{3} \times \frac{1}{4} = \frac{11}{12}$$

$$\frac{2}{3} \times \frac{1}{4} = \frac{1}{6}$$

$$\frac{2}{3} \times \frac{1}{4} = 2\frac{2}{3}$$

#41 Date _____

30 minutes earlier

2:00

:

:

15 minutes earlier

2:15

:

:

current time

2:30

3:20

12:15

15 minutes later

2:45

:

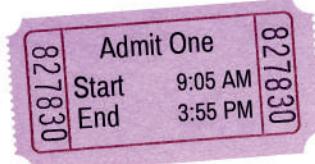
:

30 minutes later

3:00

:

:


How long is your movie?

How long is your flight?

How long is your field trip?

time	hours	minutes
7:10 PM		50
8:00 PM	1	
9:00 PM		15
9:15 PM		

65 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

2 hours and 5 minutes

time	hours	minutes
7:20 AM		
4:45 PM		

minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

hours and minutes

time	hours	minutes
9:05 AM		
3:55 PM		

minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

hours and minutes

Standard coin rolls contain: 40 quarters, 50 dimes, 40 nickels and 50 pennies.

You filled 14 rolls with your quarter collection, and you had 17 quarters leftover. How many quarters do you have?

Granny emptied her coin jar to deposit the money. She filled 4 rolls with quarters, 1 roll with dimes, 1 roll with nickels and 3 rolls with pennies. How much money did she deposit?

How much money is that?

Convert each fraction to its decimal and percent. Round decimals to the hundredth place. Use whole number percentages. (5.33)

Is the denominator a factor of 10 or 100?

No. Divide the numerator by the denominator.

$$3 \overline{)1.000} \quad \begin{array}{r} 0.333 \\ - 3 \quad \cancel{0} \\ \hline 0 \quad \cancel{0} \\ - 0 \quad \cancel{0} \\ \hline 0 \end{array}$$

Yes. Use the butterfly method to rename it.

$$\begin{array}{ll} 1 \times 10 = 10 & 5 \times ? = 10 \\ \cancel{1} \quad \cancel{5} & \cancel{1} \quad \cancel{10} \\ \hline & 10 \\ 3 \times 10 = 30 & 5 \times ? = 30 \\ \cancel{3} \quad \cancel{5} & \cancel{3} \quad \cancel{30} \\ \hline & 30 \\ 4 \times 10 = 40 & 5 \times ? = 40 \\ \cancel{4} \quad \cancel{5} & \cancel{4} \quad \cancel{40} \\ \hline & 40 \end{array}$$


Visual Fraction		Decimal	Percent
	$\frac{1}{5}$	0.2	20%

Use the provided function to complete the outputs in the y column. (5.35)

$y = x/3$		$y = 2x$		$y = 2x-2$		$y = x^2$		$y = x/10$		$y = 5x-1$	
x	y	x	y	x	y	x	y	x	y	x	y
3	1	3	6	20	38	10	100	25	2.5	9	44
6	2	5	10	4	14	7	49	19	1.9	4	19
9	3	7	14	12	22	9	81	9	0.9	5	24
12	4	9	18	8	28	4	16	91	7	6	44
15	5	11	22	2	32	8	64	4	0.4	12	59
18	6	13	26			6	36	50			

You can swim 20 meters in half a minute. Your sister can swim 50 meters in one minute. Who swims faster?

You read 50 pages of your book in ten minutes. Your sister read 70 pages of the same book in twenty minutes. Who reads faster?

Use the compass in the corner of the playground map to answer these questions:

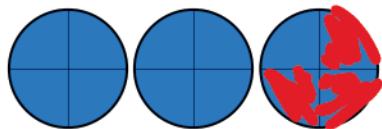
If you are in the sandbox, what direction do you have to go to swing? _____

Walk East from the swings to play. What are you doing now? _____

What direction should you walk to eat lunch at a picnic table? _____

Walk West after lunch. What happens? _____

Climb a tree next to the river to dry off. In what direction can you watch a monkey? _____


You want to be a monkey, too. What direction do you walk to play on the monkey bars? _____

Walk south. What equipment are you playing on now? _____

You want to buy a pail and shovel for the sandbox. It costs \$10.73. You have \$4.38. How much more money do you need to earn?

Add and subtract fractions and whole numbers. Draw pictures if it helps. (5.29)

$$\cancel{3\frac{12}{4}} - \frac{3}{4} = \frac{9}{4} = 2\frac{1}{4}$$

$$\frac{3}{8} - \frac{1}{4} =$$

$$\frac{1}{2} + \frac{5}{6} =$$

$$2 - \frac{2}{5} =$$

$$3 + \frac{1}{3} =$$

$$1 - \frac{3}{4} =$$

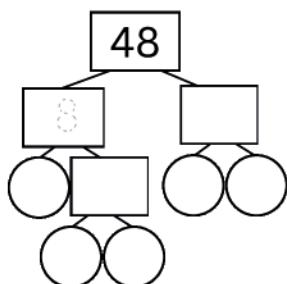
$$\frac{5}{9} - \frac{1}{3} =$$

$$\frac{1}{2} + \frac{3}{5} =$$

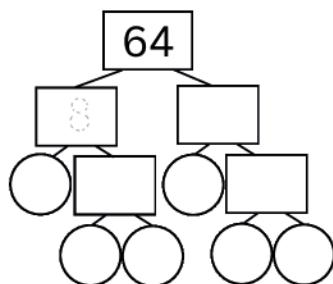
$$2 - \frac{2}{3} =$$

$$1 + \frac{1}{4} =$$

$$2 - \frac{4}{5} =$$


$$\frac{2}{3} - \frac{1}{2} =$$

List the **factors** of 48: _____


List the **factors** of 64: _____

What is the Greatest Common Factor (GCF) of 48 and 64? _____

Factor the number in the top box of each factor tree. (5.24)

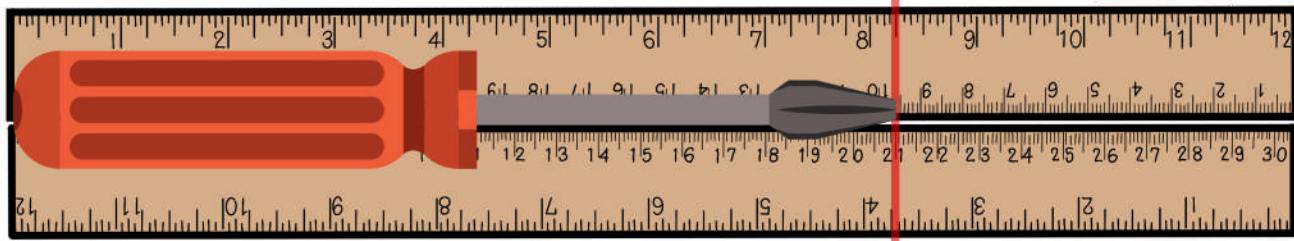
prime factorization: _____

prime factorization: _____

Reduce this fraction to its simplest form two different ways.

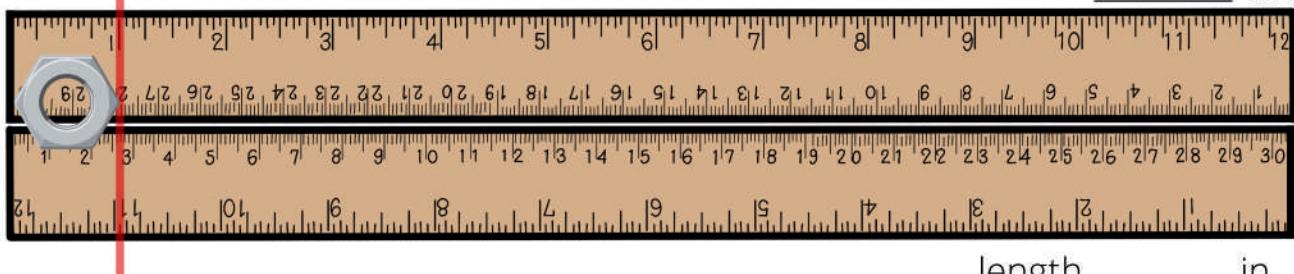
$$\frac{48}{64} \quad \frac{48 \div \text{GCF}}{64 \div \text{GCF}} =$$

Cancel common factors from the numerator and denominators.

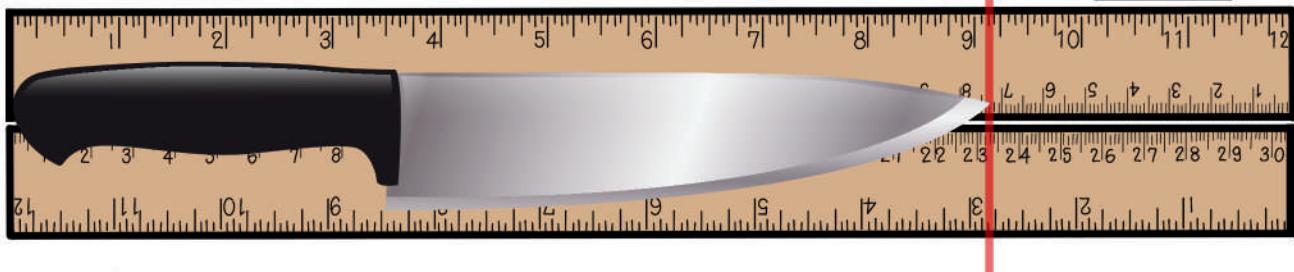

$$\frac{\text{prime factorization of 48}}{\text{prime factorization of 64}} =$$

#43 Date _____

Measure each item in both in. and cm. Write amounts in fractions or decimals. Remember to start from zero on both sides of the ruler.


screwdriver length _____ in.

_____ cm.


length _____ in.

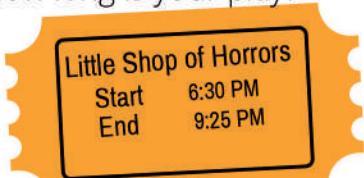
_____ cm.

length _____ in.

_____ cm.

Use a ruler to measure these line segments in customary and metric units. Use decimals.

5.5 in. 14 cm.

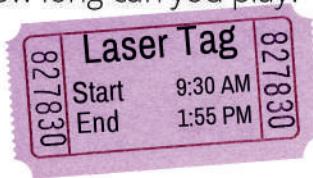

3 in. 7.5 cm.

Draw a rectangle with sides all the same length. Can you think of two other names for this shape?

Road trip! We have tons of snacks and we are driving from Minneapolis, Minnesota to Dallas, TX. They are in the same time zone. We are leaving at 9:30 a.m.. My maps app says it should take 11 hours and 41 minutes. What time should we arrive?

Note: the date of arrival is a day later than the date of departure. Disregard time zone changes.

How long is your play?

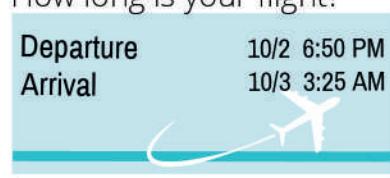

time	hours	minutes
6:30 PM		
9:25 PM		

_____ minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

_____ hours and _____ minutes

How long can you play?


time	hours	minutes
9:30 AM		
1:55 PM		

_____ minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

_____ hours and _____ minutes

How long is your flight?

time	hours	minutes
6:50 PM		
3:25 AM		

_____ minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

_____ hours and _____ minutes

Use the provided function to complete the outputs in the y column. (5.35)

$$y = x^2 + 1$$

x	y
12	145
5	
4	
8	
6	
10	

$$y = x/100$$

x	y
2	0.02
75	
13	
37	
22	
46	

$$y = 3x - 2$$

x	y
12	34
5	
6	
9	
7	
3	

$$y = 8x - 5$$

x	y
7	51
11	
5	
8	
6	
4	

$$y = \sqrt{x}$$

x	y
1	1
25	
16	
81	
9	
36	

$$y = 5x$$

x	y
3	15
8	
12	
9	
4	
5	

#44 Date _____

Convert these **US Customary** units of length.

$$2 \text{ ft} = \underline{\hspace{2cm}} \text{ in} \qquad 3 \text{ ft} = \underline{\hspace{2cm}} \text{ in}$$

$$54 \text{ ft} = \underline{\hspace{2cm}} \text{ yd} \qquad 2 \text{ mi} = \underline{\hspace{2cm}} \text{ ft}$$

$$54 \text{ yd} = \underline{\hspace{2cm}} \text{ ft} \qquad 3 \text{ yd} = \underline{\hspace{2cm}} \text{ in}$$

$$12 \text{ in} = 1 \text{ ft}$$

$$3 \text{ ft} = 1 \text{ yd}$$

$$5280 \text{ ft} = 1 \text{ mi}$$

How many cm is $\frac{3}{4}$ of one meter?

What is the sum of two and three tenths and three and five tenths?

Convert these **metric** length units.

kilo	hecta	deca	base unit	deci	centi	milli
------	-------	------	-----------	------	-------	-------

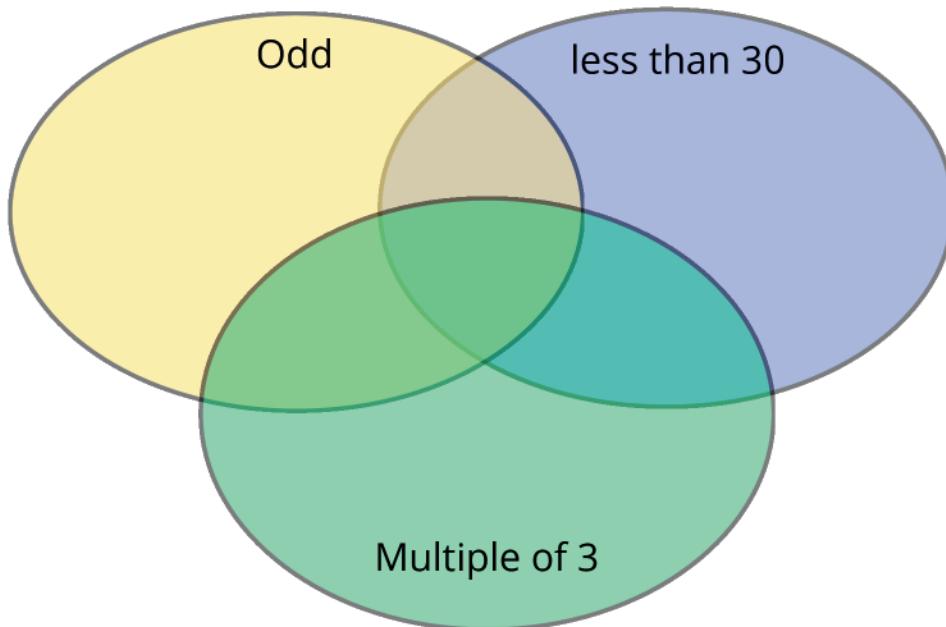
$$1000 \text{ m} = 1 \text{ km} \quad 100 \text{ m} = 1 \text{ hm} \quad 10 \text{ m} = 1 \text{ dam} \quad \text{meter} \quad 1 \text{ m} = 10 \text{ dm} \quad 1 \text{ m} = 100 \text{ cm} \quad 1 \text{ m} = 1000 \text{ mm}$$

$$25 \text{ m} = \underline{\hspace{2cm}} \text{ mm} \quad 25 \text{ m} \left(\frac{1000 \text{ mm}}{1 \text{ m}} \right) = 25000 \text{ mm} \quad 2 \text{ m} = \underline{\hspace{2cm}} \text{ mm}$$

$$800 \text{ cm} = \underline{\hspace{2cm}} \text{ m} \quad 800 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = \underline{\hspace{2cm}} \text{ m} \quad 200 \text{ cm} = \underline{\hspace{2cm}} \text{ m}$$

$$9.1 \text{ km} = \underline{\hspace{2cm}} \text{ m} \quad 9.1 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) = \underline{\hspace{2cm}} \text{ m} \quad 3 \text{ km} = \underline{\hspace{2cm}} \text{ m}$$

$$12 \text{ m} = \underline{\hspace{2cm}} \text{ cm} \quad 12 \text{ m} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right) = \underline{\hspace{2cm}} \text{ cm} \quad 45 \text{ m} = \underline{\hspace{2cm}} \text{ cm}$$


$$2 \text{ m} = \underline{\hspace{2cm}} \text{ mm} \quad 2 \text{ m} \left(\frac{1000 \text{ mm}}{1 \text{ m}} \right) = \underline{\hspace{2cm}} \text{ mm} \quad 16 \text{ m} = \underline{\hspace{2cm}} \text{ cm}$$

$$19 \text{ km} = \underline{\hspace{2cm}} \text{ m} \quad 19 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) = \underline{\hspace{2cm}} \text{ m} \quad 5000 \text{ mm} = \underline{\hspace{2cm}} \text{ m}$$

$$21 \text{ cm} = \underline{\hspace{2cm}} \text{ m} \quad 21 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = \underline{\hspace{2cm}} \text{ m} \quad 100 \text{ cm} = \underline{\hspace{2cm}} \text{ m}$$

$$14 \text{ m} = \underline{\hspace{2cm}} \text{ km} \quad 14 \text{ m} \left(\frac{1 \text{ km}}{1000 \text{ m}} \right) = \underline{\hspace{2cm}} \text{ km} \quad 1 \text{ m} = \underline{\hspace{2cm}} \text{ km}$$

Find the correct space for each number in this Venn diagram. Cross out numbers as you use them. Circle any leftover numbers that don't have fit into the diagram. (3.30)

18	12
45	24
30	25
6	9
52	13
35	36
3	27
21	10
19	59
33	15
2	39
55	99

Tennis balls come in plastic tubes of 3 balls. Each box holds 12 plastic tubes. Each pallet holds 144 boxes. How many tennis balls are on each pallet?

If you bought 4 pounds of grapes for \$5.48, what was the cost per pound?

You paid \$20 for a movie ticket and got \$7.51 change. How much was your ticket?

You bought popcorn and soda for \$3.37 each. How much money do you have now?

#45 Date _____

Convert these **US Customary** units to **Metric** units of length. $1 \text{ in} = 2.54 \text{ cm}$

$$53 \text{ in} = \underline{\hspace{2cm}} \text{ m} \quad 53 \text{ in} \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 1.36 \text{ m}$$

$$\begin{array}{r} 2.54 \\ \times 53 \\ \hline 762 \\ 12700 \\ \hline 134.62 \end{array}$$

$$1 \text{ ft} = \underline{\hspace{2cm}} \text{ cm} \quad 1 \text{ ft} \left(\frac{12 \text{ in}}{1 \text{ ft}} \right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) = \underline{\hspace{2cm}} \text{ cm}$$

divide by 100 1.36 m

$$1 \text{ yd} = \underline{\hspace{2cm}} \text{ m} \quad 1 \text{ yd} \left(\frac{\text{ft}}{\text{yd}} \right) \left(\frac{\text{in}}{\text{ft}} \right) \left(\frac{\text{cm}}{\text{in}} \right) \left(\frac{\text{m}}{\text{cm}} \right) =$$

convert to inches
 $5' 1" = \underline{\hspace{2cm}} \text{ cm}$

$$\text{in} \left(\frac{\text{cm}}{\text{in}} \right) =$$

A basketball player is 6' 9". How tall is he in meters?

First, how many total inches is 6 feet and 9 inches?

$$\text{in} \left(\frac{\text{cm}}{\text{in}} \right) \left(\frac{\text{m}}{\text{cm}} \right) =$$

Most African elephants weigh about 4 tons. How many pounds is that?

128 oz = 1 gal

There are 64 people attending your family reunion. You are in charge of the picnic. You figure each person will want 2 glasses (12 oz. each) of lemonade. How many gallons of lemonade should you buy?

Convert to the BASE UNIT (meter) and then to the desired unit. (Multiply by one, TWICE, if needed)

kilo	hecta	deca	base unit	deci	centi	milli
1000 m = 1 km	100 m = 1 hm	10 m = 1 dam	meter	1 m = 10 dm	1 m = 100 cm	1 m = 1000 mm

Two zeroes larger; move the decimal two places to the right.

$$9 \text{ m} = \underline{\quad} \text{ cm} \quad 9 \cancel{\text{ m}} \left(\frac{100 \text{ cm}}{1 \cancel{\text{ m}}} \right) = 9 \times 100 \text{ cm.} = 900 \text{ cm.}$$

Three zeroes larger; move the decimal three places to the right.

$$2.02 \text{ km} = \underline{\quad} \text{ m} \quad 2.02 \cancel{\text{ km}} \left(\frac{1000 \cancel{\text{ m}}}{1 \cancel{\text{ km}}} \right) =$$

Five zeroes larger; move the decimal five places to the right.

$$0.173 \text{ km} = \underline{\quad} \text{ cm} \quad 0.173 \text{ km} \left(\frac{\text{m}}{\text{km}} \right) \left(\frac{\text{cm}}{\text{m}} \right) =$$

Do you see the pattern?

Multiply by 10 for each box you move to the right; divide by 10 for each box you move to the left. Multiplying by 10 moves the decimal place one digit to the right. Dividing by 10 moves the decimal place one digit to the left.

To which decimal number does each arrow point? (5.34)

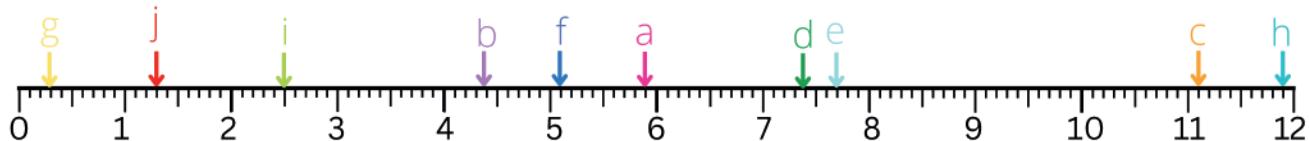
a 5.9

c \underline{\quad}

e \underline{\quad}

g \underline{\quad}

i \underline{\quad}


b \underline{\quad}

d \underline{\quad}

f \underline{\quad}

h \underline{\quad}

j \underline{\quad}

The musical, *Les Misérables*, was a huge hit. The theater was filled all 7 nights. If 14,700 people attended total, how many attended each night?

If each ticket was \$30, how much money did the production earn from ticket sales each night?

#46 Date _____

How much does each item weigh?

1 lb 12 oz

___ lb ___ oz

___ lb ___ oz

___ lb ___ oz

___ lb ___ oz

What is the mass of each item?

2 kg 500 g

___ kg ___ g

___ kg ___ g

___ kg ___ g

___ kg ___ g

Convert these **US CUSTOMARY** units of weight.

2 lb = ___ oz

1.5 lb = ___ oz

16 oz = 1 lb

2000 lb = 1 ton

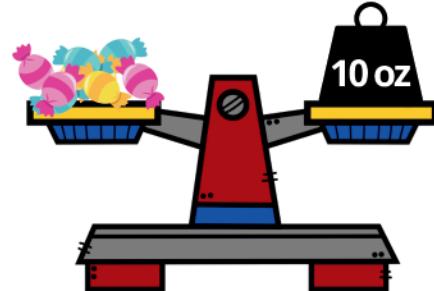
36 oz = ___ lb ___ oz

1.5 tons = ___ lb

1000 g = 1 kg

3 tons = ___ lb

5000 lb = ___ ton (decimal)


2500 lb = ___ ton ___ lb

3 lb 5 oz = ___ oz

40 oz = ___ lb (decimal)

2 oz = ___ lb (fraction)

Ten pieces of candy are on a scale, balanced by a 10 oz weight. What does each piece of candy weigh?

Convert these **METRIC** units of mass.

kilo	hecta	deca	base unit	deci	centi	milli
1000 g = 1 kg	100 g = 1 hg	10 g = 1 dag	gram	1 g = 10 dg	1 g = 100 cg	1 g = 1000 mg

$$2 \text{ g} = \underline{\hspace{2cm}} \text{ mg}$$

$$1500 \text{ mg} = \underline{\hspace{2cm}} \text{ g} \text{ (decimal)}$$

$$2 \text{ g} = \underline{\hspace{2cm}} \text{ kg}$$

$$300 \text{ cg} = \underline{\hspace{2cm}} \text{ g}$$

$$2.5 \text{ kg} = \underline{\hspace{2cm}} \text{ g}$$

$$3500 \text{ g} = \underline{\hspace{2cm}} \text{ kg} \text{ (decimal)}$$

Convert to the BASE UNIT (gram) and then to the desired unit.

$$0.19 \text{ kg} = \underline{\hspace{2cm}} \text{ cg} \quad 0.19 \cancel{\text{kg}} \left(\frac{1000 \text{ g}}{1 \cancel{\text{kg}}} \right) \left(\frac{100 \text{ cg}}{1 \cancel{\text{g}}} \right) = 0.19 \times 100000 = 19000 \text{ cg}$$

Five zeroes larger; move the decimal five places to the right.

$$1021 \text{ mg} = \underline{\hspace{2cm}} \text{ kg} \quad 1021 \cancel{\text{mg}} \left(\frac{1 \cancel{\text{g}}}{1000 \cancel{\text{mg}}} \right) \left(\frac{1 \text{ kg}}{1000 \cancel{\text{g}}} \right) = 1021 \div 1000000 = 0.001021 \text{ kg}$$

Six zeroes smaller; move the decimal six places to the left.

$$0.25 \text{ dag} = \underline{\hspace{2cm}} \text{ mg} \quad 0.25 \text{ dag} \left(\frac{\text{g}}{\text{dag}} \right) \left(\frac{\text{mg}}{\text{g}} \right) =$$

Use comparison symbols (<, >, =) to compare these decimal numbers. (5.34)

$$0.038 \quad \underline{\hspace{0.5cm}} \quad 3.8$$

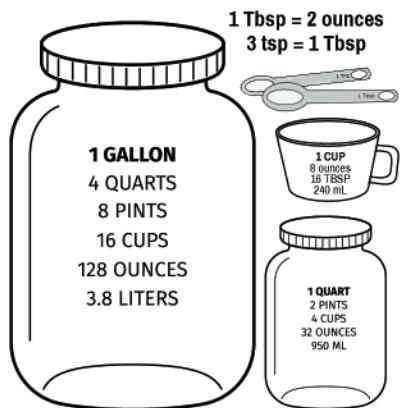
$$0.53 \quad \underline{\hspace{0.5cm}} \quad 0.35$$

$$0.3 \quad \underline{\hspace{0.5cm}} \quad 0.3$$

$$1.2 \quad \underline{\hspace{0.5cm}} \quad 0.12$$

$$0.44 \quad \underline{\hspace{0.5cm}} \quad 4.4$$

$$0.41 \quad \underline{\hspace{0.5cm}} \quad 0.14$$

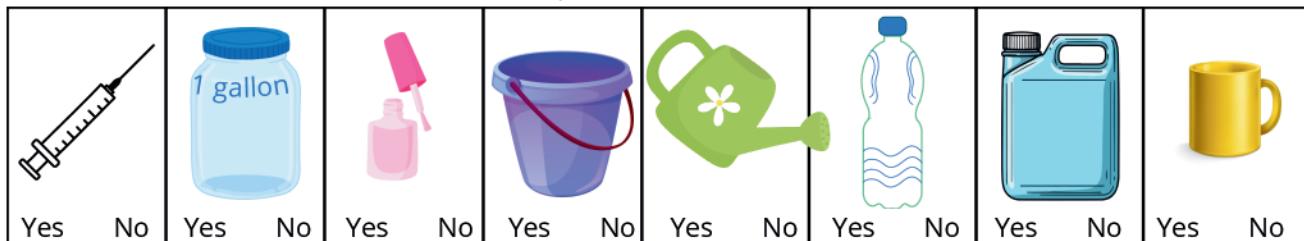

$$0.01 \quad \underline{\hspace{0.5cm}} \quad 0.001$$

$$19 \quad \underline{\hspace{0.5cm}} \quad 0.19$$

$$0.37 \quad \underline{\hspace{0.5cm}} \quad 0.073$$

#47 Date _____

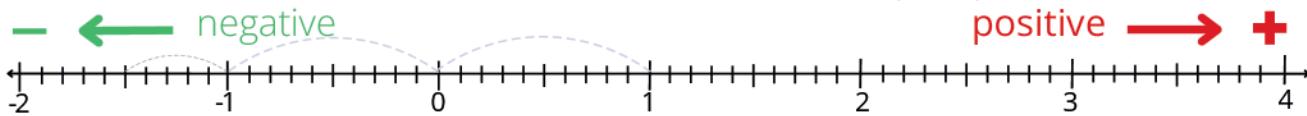
Convert these US Customary Units.


2 gal = _____ qt	10 tsp = _____ Tbsp _____ tsp
1 gal = _____ c	19 c = _____ gal _____ c
16 oz = _____ c	5 c = _____ qt _____ c
8 pt = _____ gal	36 c = _____ gal _____ qt
1 qt = _____ c	160 oz = _____ gal _____ qt
2 Tbsp = _____ oz	12 oz = _____ c _____ Tbsp
2 Tbsp = _____ tsp	6 qt = _____ gal _____ c

Convert to the BASE UNIT (liter) and then to the desired unit.

(Multiply by one, TWICE, if needed)

kilo	hecta	deca	base unit	deci	centi	milli
1000 L = 1 kL	100 L = 1 hL	10 L = 1 daL	liter	1 L = 10 dL	1 L = 100 cL	1 L = 1000 mL
0.3 L = _____ mL	0.13 kL = _____ dL	$0.13 \cancel{kL} \left(\frac{1000 \cancel{L}}{1 \cancel{kL}} \right) \left(\frac{10 \cancel{dL}}{1 \cancel{L}} \right) = \frac{0.13 \times 1000 \times 10}{1} = 13000 \text{ dL}$				
7000 L = _____ kL	500 cL = _____ hL	$500 \cancel{cL} \left(\frac{1 \cancel{L}}{100 \cancel{cL}} \right) \left(\frac{1 \cancel{hL}}{100 \cancel{L}} \right) = \frac{500}{100 \times 100} = 0.05 \text{ hL}$				
35 daL = _____ L	0.01 kL = _____ dL	$0.01 \cancel{kL} \left(\frac{1 \cancel{L}}{100 \cancel{kL}} \right) \left(\frac{10 \cancel{dL}}{1 \cancel{L}} \right) = \frac{0.01 \times 10}{100} = 0.001 \text{ dL}$				
1.5 kL = _____ L	9.7 daL = _____ mL	$9.7 \cancel{daL} \left(\frac{1 \cancel{L}}{10 \cancel{daL}} \right) \left(\frac{1000 \cancel{mL}}{1 \cancel{L}} \right) = 970 \text{ mL}$				


Can each container hold 1 L of liquid or more?

Circle the best estimate of the volume of each item.

8L 8oz 8mL	1 qt 1oz 1tsp	1L 1gal 1 oz	1 L 1 mL 1 kL	200L 200mL 200kL

Use the number line to find each sum or difference. (3.58)

$$1 - 2.5 = \underline{-1.5}$$

$$-1 + 1.1 = \underline{\quad}$$

$$-2 + 1.8 = \underline{\quad}$$

$$3 - 2.5 = \underline{\quad}$$

$$1 + 1.1 = \underline{\quad}$$

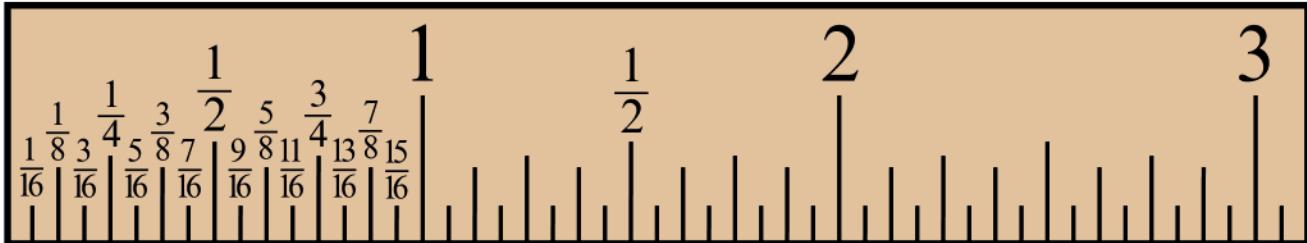
$$2 - 1.8 = \underline{\quad}$$

$$2.5 - 3 = \underline{\quad}$$

$$-1.3 - 0.3 = \underline{\quad}$$

$$-1 - 0.6 = \underline{\quad}$$

$$1.5 - 1.7 = \underline{\quad}$$


$$-1.3 + 0.3 = \underline{\quad}$$

$$-1 + 0.6 = \underline{\quad}$$

Find a common denominator, add the fractions then add the mixed numbers.

$$\begin{array}{r} 2\frac{1}{4} \\ + 1\frac{3}{8} \\ \hline \end{array} \quad \begin{array}{r} 1\frac{1}{4} \\ + 2\frac{1}{3} \\ \hline \end{array} \quad \begin{array}{r} 3\frac{2}{3} \\ + 3\frac{1}{2} \\ \hline \end{array} \quad \begin{array}{r} 3\frac{3}{4} \\ + 2\frac{1}{2} \\ \hline \end{array} \quad \begin{array}{r} 1\frac{7}{8} \\ + 2\frac{3}{4} \\ \hline \end{array}$$

Label each vertical line on this ruler. Use the simplest form of each fraction.

Sometimes there is no direct conversion, so you have to use TWO conversion factors to reach the unit you need. Always reduce to the simplest form.

$$48 \text{ in} = \underline{\quad} \text{ yd} \quad 48 \text{ in} \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) \left(\frac{1 \text{ yd}}{3 \text{ ft}} \right) = \frac{48}{36} \text{ yd.} = 1\frac{1}{3} \text{ yd.}$$

$$2 \text{ yd} = \underline{\quad} \text{ in} \quad 2 \text{ yd} \left(\frac{\text{ft}}{\text{yd}} \right) \left(\frac{\text{in}}{\text{ft}} \right) =$$

$$1 \text{ mi} = \underline{\quad} \text{ yd} \quad 1 \text{ mi} \left(\frac{\text{ft}}{\text{mi}} \right) \left(\frac{\text{yd}}{\text{ft}} \right) =$$

(Multiply by one, TWICE!)

#48 Date_____

Solve.

$$|-6| = 6$$

$$|6| =$$

$$|-35| =$$

$$|35| =$$

$$|2 - 7| = 5$$

$$|-2 - 7| =$$

$$|-7 + 2| =$$

$$|2 + 7| =$$

$$|5 - 22| =$$

$$22 - |-5| =$$

$$5 - |-22| =$$

$$|-5 - 22| =$$

Solve these problems. When the signs are the SAME the result is positive. And when the signs are DIFFERENT, the result is negative.

$$-6 \times 8 = -48$$

$$6 \times (-8) =$$

$$48 \div (-8) =$$

$$3 \times (-9) =$$

$$-3 \times (-9) =$$

$$-27 \div 9 =$$

$$-8 \times (-7) =$$

$$-8 \times 7 =$$

$$-56 \div (-7) =$$

$$32 \div (-4) =$$

$$-32 \div 4 =$$

$$-32 \div (-4) =$$

Write an integer to represent each expression:

You dove fifteen feet below the ocean's surface. -15

You earned \$2300. _____

It is 20 degrees below zero. _____

Move 15 units to the left of 3 on the number line. _____

You made a profit of \$2500 on an investment. _____

She received a five point deduction on figure skating. _____

Today is 17 degrees colder than yesterdays 5 degree temperature. _____

What do you call acetominophen all by itself?

Use the number line and the clues to find the answer.

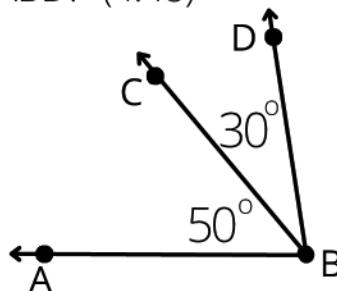
Plot these points on the number line:

A point at 3. Label it T

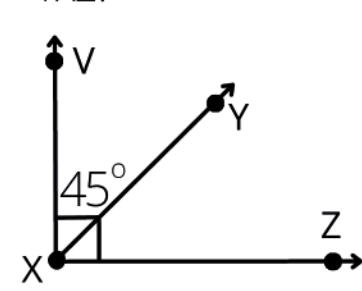
Two points that are 9 away from 3. Label both points E.

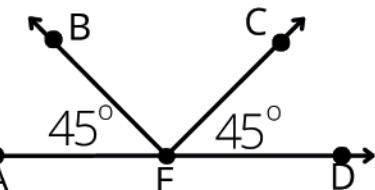
Two points that are 3 away from 3. Label both points Y.

Two points that are 15 away from 3. Label both points O.


Two points that are 12 away from 3. Label both points N.

Two points that are 18 away from 3. Label both points L.


Two points that are 6 away from 3. Label both points L.


What is the measure of $\angle ABD$? (4.48)

What is the measure of $\angle YXZ$?

AD is a straight line. What is the measure of $\angle BEC$?

Find a common denominator, then add and subtract the fractions. (5.27)

$$\frac{12}{24} - \frac{1}{4} = \frac{1}{4}$$

$$\frac{5}{6} - \frac{3}{12} =$$

$$\frac{1}{3} + \frac{1}{4} =$$

$$\frac{7}{8} - \frac{1}{2} =$$

$$\frac{1}{2} + \frac{1}{3} =$$

$$\frac{2}{2} - \frac{1}{3} =$$

$$\frac{1}{3} - \frac{1}{12} =$$

$$\frac{1}{4} + \frac{5}{8} =$$

$$\frac{2}{3} - \frac{3}{6} =$$

$$\frac{3}{4} - \frac{3}{6} =$$

$$\frac{1}{2} + \frac{3}{6} =$$

$$\frac{3}{4} - \frac{3}{12} =$$

#49 Date _____

Find the value of the exponents.

Two to the power of zero $2^0 = \underline{\hspace{2cm}}$

$$3^0 = \underline{\hspace{2cm}}$$

Two to the power of one $2^1 = \underline{\hspace{2cm}}$

$$3^1 = \underline{\hspace{2cm}}$$

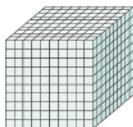
Two squared $2^2 = 2 \times 2 = \underline{\hspace{2cm}}$

$$3^2 = 3 \times 3 = \underline{\hspace{2cm}}$$

Two cubed $2^3 = 2 \times 2 \times 2 = \underline{\hspace{2cm}}$

$$3^3 = 3 \times 3 \times 3 = \underline{\hspace{2cm}}$$

Two to the power of four $2^4 = 2 \times 2 \times 2 \times 2 = \underline{\hspace{2cm}}$

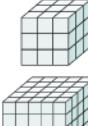

$$3^4 = 3 \times 3 \times 3 \times 3 = \underline{\hspace{2cm}}$$

Two to the power of five $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = \underline{\hspace{2cm}}$

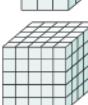
$$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = \underline{\hspace{2cm}}$$

Draw lines to connect each column.

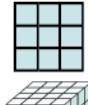
$$4^2 \text{ (four squared)}$$


(these are cubes)

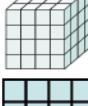
$$2^3 \text{ (two cubed)}$$


(these are squares)

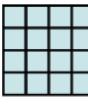
$$5^2$$


$$25$$

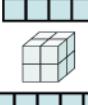
$$10^3$$


$$27$$

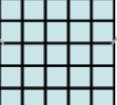
$$4^3$$


$$4$$

$$3^2$$


$$64$$

$$2^2$$


$$125$$

$$5^3$$

$$16$$

$$3^3$$

$$8$$

Find both square roots.

$$\sqrt{25} = \underline{\hspace{2cm}}$$

$$\sqrt{9} = \underline{\hspace{2cm}}$$

$$\sqrt{36} = \underline{\hspace{2cm}}$$

$$\sqrt{16} = \underline{\hspace{2cm}}$$

$$\sqrt{4} = \underline{\hspace{2cm}}$$

$$\sqrt{1} = \underline{\hspace{2cm}}$$

$$\sqrt{100} = \underline{\hspace{2cm}}$$

$$\sqrt{64} = \underline{\hspace{2cm}}$$

$$\sqrt{81} = \underline{\hspace{2cm}}$$

$$\sqrt{49} = \underline{\hspace{2cm}}$$

Solve.

$$|-3 - 12| = 15$$

$$|6 - 9| =$$

$$|-4 - 6| =$$

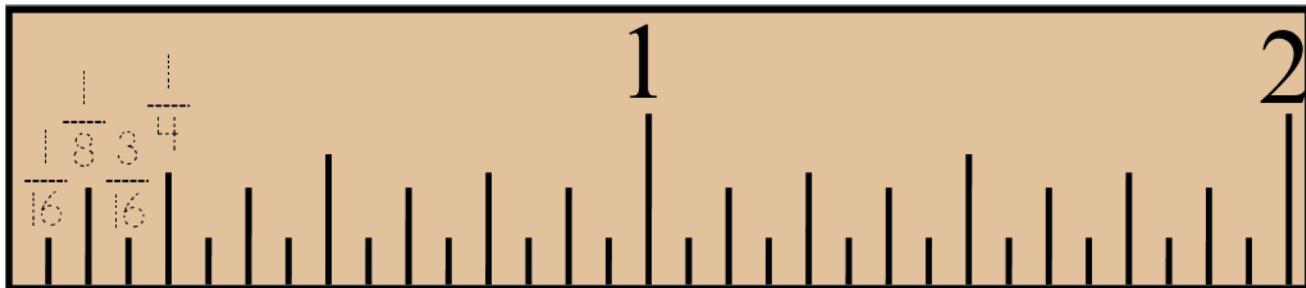
$$5 \times |-8| = 40$$

$$5 \times (-8) =$$

$$3 + |-15| =$$

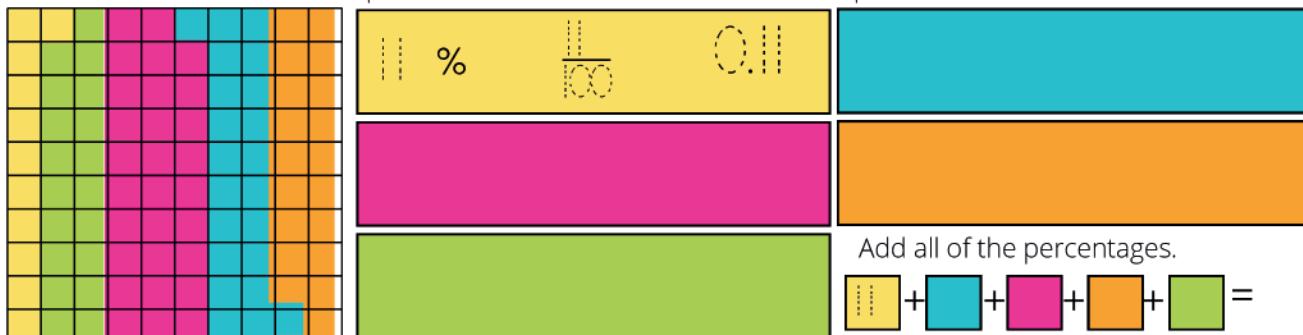
$$|-7| \times 6 =$$

$$-7 \times 6 =$$

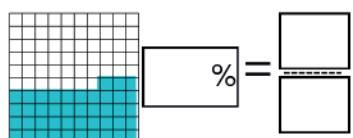
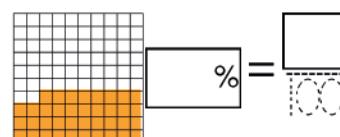
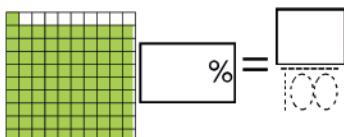
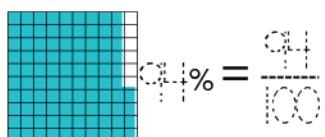

$$|-56| \div 8 =$$

$$7 \times (-8) =$$

$$-7 \times 8 =$$


$$-7 \times (-8) =$$

Label each vertical line on this ruler. Use the simplest form of each fraction.

This grid has 100 squares. What percentage is each color? (4.40)

percent fraction decimal percent fraction decimal

Each block has 100 squares. Color the squares to illustrate each percentage equation and fill in any missing parts of each equation. (4.40)

#50 Date _____

Solve using the Order of Operations (PEMDAS).

$$5^2 - \sqrt{81} = \underline{\hspace{2cm}}$$

$$|3 - 2 \times 5| = \underline{\hspace{2cm}}$$

$$9 - 12 \div 4 = \underline{\hspace{2cm}}$$

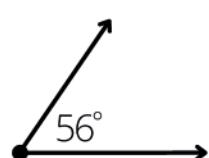
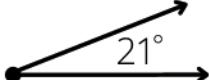
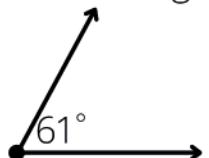
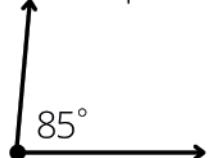
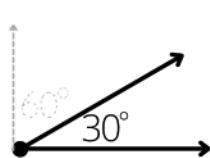
$$\sqrt{100} - 7(2 \times 4) = \underline{\hspace{2cm}}$$

$$2(5 + 1) \div (-2) = \underline{\hspace{2cm}}$$

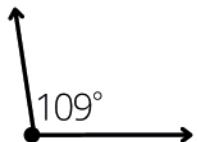
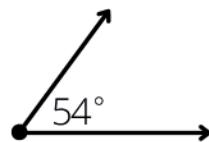
$$-8(5 + 1) \div 12 = \underline{\hspace{2cm}}$$

$$2 + 3 \times 4 - 7 \times 2 = \underline{\hspace{2cm}}$$

$$(2 + 14 \div 2) \div 3 = \underline{\hspace{2cm}}$$






$$8(6 \times 2) \div \sqrt{36} = \underline{\hspace{2cm}}$$

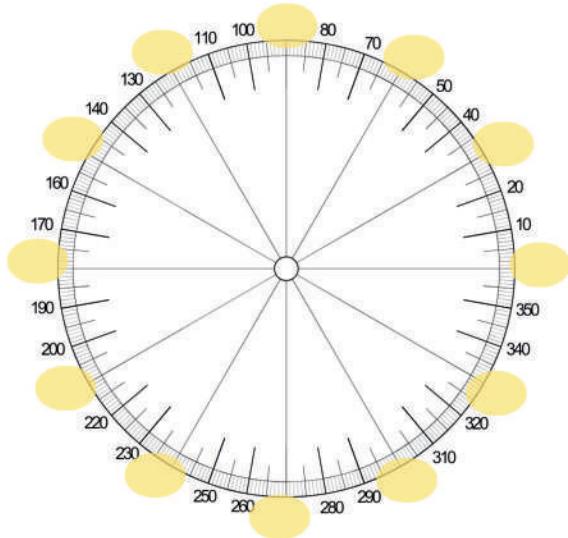
$$(8^2 - 6^2) \div 7 = \underline{\hspace{2cm}}$$



$$1 + 24 \div 2^2 = \underline{\hspace{2cm}}$$

$$-7 + 6 \times (-2) = \underline{\hspace{2cm}}$$

Draw and label the complement of each angle. (4.71)

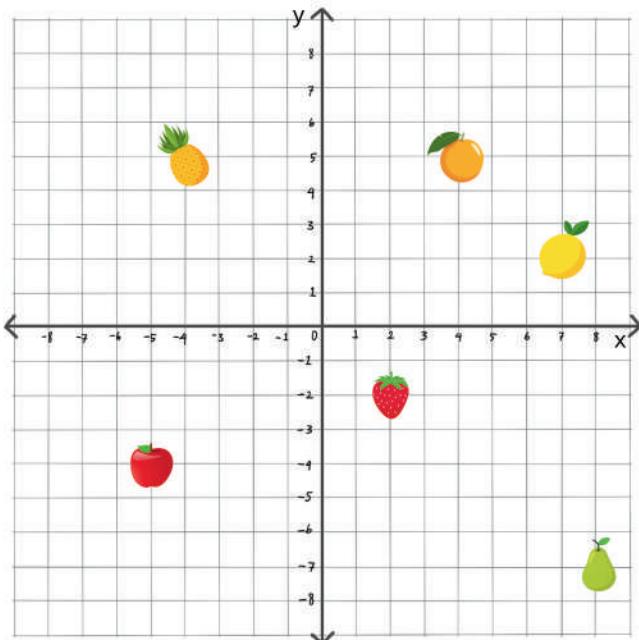
Draw and label the supplement of each angle.

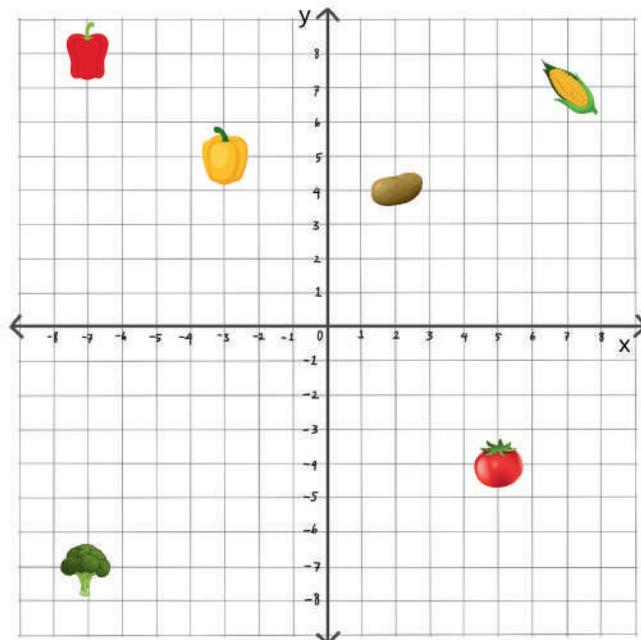

Write operators ($\times, \div, +, -$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (3.83)

8	\div	2	$+$	1	$=$	5
1		3		2	$=$	1
7		6		9	$=$	4
$=$	$=$	$=$	$=$	$=$	$=$	
1		1		8	$=$	8

2	$-$	2	\times	1	$=$	0
5		0		3	$=$	3
6		3		7	$=$	-5
$=$	$=$	$=$	$=$	$=$	$=$	
1		2		-4	$=$	-2

5	$-$	1	$+$	3	$=$	7
3		4		6	$=$	2
2		2		4	$=$	0
$=$	$=$	$=$	$=$	$=$	$=$	
4		2		1	$=$	9


Use your reference pages to fill in the missing angles (the yellow ovals). (4.48)


Draw:

Right Angle	Line Segment
Reflex Angle	Ray
Obtuse Angle	Line
Straight Angle	Acute Angle

Find the coordinates (x, y) of each item. (4.80)

(4,5) (,) (,) (,) (,) (,)

(-7, 8) (,) (,) (,) (,) (,)

What are the coordinates of the origin?

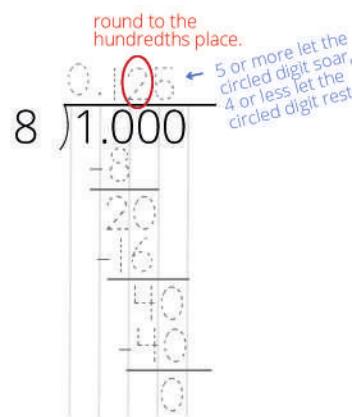
#52 Date _____

Complete this chart. Write fractions in their simplest form. Round decimals to the **hundredths place** and percents to the **whole number**.

Is the denominator a factor of 10 or 100?

Yes use the butterfly method No divide the numerator by the denominator

$$1 \times 100 = 100 \quad 4 \times ? = 100$$

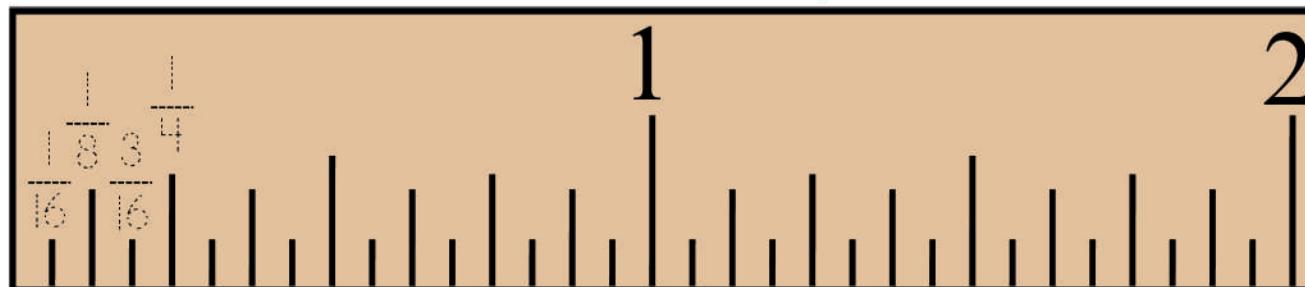

$$\frac{1}{4} = \frac{1}{100}$$

$$1 \times 10 = 10 \quad 5 \times ? = 10$$

$$\frac{1}{2} = \frac{1}{10}$$

$$3 \times 100 = 300 \quad 4 \times ? = 300$$

$$\frac{3}{4} = \frac{3}{100}$$


$$8) 3.000$$

$$8) 5.000$$

$$8) 7.000$$

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{8}$	0.125	12%

Label each vertical line on this ruler. Use the simplest form of each fraction.

Find a common denominator, then add and subtract the fractions. Simplify. (5.27)

$$\frac{3}{4} - \frac{1}{24} = \frac{1}{4}$$

$$\frac{1}{4} + \frac{7}{12} =$$

$$\frac{2}{3} - \frac{1}{2} =$$

$$\frac{3}{8} + \frac{1}{4} =$$

$$\frac{1}{2} - \frac{1}{3} =$$

98

$$\frac{2}{3} + \frac{1}{2} =$$

$$\frac{1}{3} - \frac{1}{12} =$$

$$\frac{1}{3} + \frac{4}{9} =$$

How many years is seventy-five percent of two centuries?

If 10 notebooks cost \$18.90, how many of them could you buy with \$100?

List eight **multiples** of:

2: 2, 4, 6, 8, 10, 12, 14, 16

3: 3, 6, 9, 12, 15, 18, 21, 24

4: 4, 8, 12, 16, 20, 24, 28, 32

5: 5, 10, 15, 20, 25, 30, 35, 40

6: 6, 12, 18, 24, 30, 36, 42, 48

7: 7, 14, 21, 28, 35, 42, 49, 56

8: 8, 16, 24, 32, 40, 48, 56, 64

9: 9, 18, 27, 36, 45, 54, 63, 72

Name the least common multiple (LCM) of:

2 and 3 6 2 and 4

2 and 5 3 and 4

3 and 5 3 and 6

3 and 9 4 and 8

5 and 6 5 and 7

5 and 8 5 and 9

6 and 8 6 and 9

7 and 6 7 and 8

Find a common denominator (LCM) for both fractions before adding or subtracting them. Simplify.

$$\frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

$$\frac{1}{2} - \frac{1}{4} =$$

$$\frac{1}{2} + \frac{1}{5} =$$

$$\frac{2}{3} - \frac{1}{4} =$$

$$\frac{2}{3} + \frac{3}{5} =$$

$$\frac{1}{3} - \frac{1}{6} =$$

$$\frac{1}{3} + \frac{2}{9} =$$

$$\frac{3}{4} - \frac{1}{8} =$$

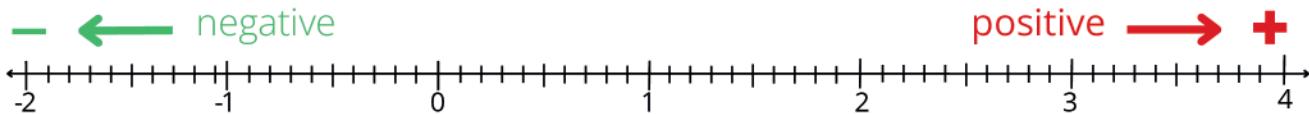
$$\frac{4}{5} + \frac{5}{6} =$$

$$\frac{4}{5} - \frac{3}{7} =$$

$$\frac{1}{5} + \frac{3}{8} =$$

$$\frac{4}{5} - \frac{4}{9} =$$

$$\frac{4}{7} + \frac{1}{6} =$$


$$\frac{5}{7} - \frac{1}{8} =$$

$$\frac{2}{7} + \frac{4}{9} =$$

$$\frac{5}{8} - \frac{1}{9} =$$

#53 Date _____

Use the number line to find each sum or difference.

$$1 - 1.5 = \underline{-0.5}$$

$$1 + 2.1 = \underline{\quad}$$

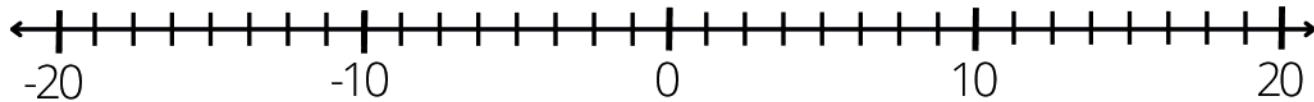
$$-2 + 1.3 = \underline{\quad}$$

$$2 - 3.7 = \underline{\quad}$$

$$1 - 2.1 = \underline{\quad}$$

$$-0.2 + 3.8 = \underline{\quad}$$

$$2.4 - 3 = \underline{\quad}$$


$$-2 + 1.9 = \underline{\quad}$$

$$3 - 0.4 = \underline{\quad}$$

$$1.6 - 1.5 = \underline{\quad}$$

$$4 - 1.1 = \underline{\quad}$$

$$3 + 0.4 = \underline{\quad}$$

Stack the decimal numbers and follow the algorithm to add and subtract them. Always subtract the smaller number from the larger number, then change the sign if you need to.

$$3.009 - 7.4 = \underline{-4.391}$$

$$\begin{array}{r} 7.4 \\ - 3.009 \\ \hline 4.391 \end{array}$$

$$2 - 8.015 = \underline{\quad}$$

$$12 - 15.35 = \underline{\quad}$$

$$-1 - 6.12 = \underline{\quad}$$

$$-9.5 + 3.07 = \underline{\quad}$$

$$4.2 - 14.2 = \underline{\quad}$$

$$11.5 + 5.68 = \underline{\quad}$$

$$3.9 - 12.05 = \underline{\quad}$$

Use comparison symbols ($<$, $>$, $=$) to compare these decimal numbers. (5.34)

$$1.121 \quad 1.211$$

$$0.09 \quad 0.90$$

$$0.50 \quad 0.5$$

$$2.132 \quad 21.32$$

$$0.41 \quad 0.14$$

$$0.28 \quad 2.8$$

$$0.510 \quad 0.51$$

$$3.09 \quad 30.9$$

$$1.37 \quad 13.7$$

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS). (3.38)

$$= 8$$

$$= 5$$

$$= 9$$

$$= 7$$

$$\text{lion} - \text{pig} = 4$$

$$2 \text{ elephant} = 16$$

$$\text{turtle} \times \text{elephant} = 56$$

$$\text{turtle} \times \text{pig} = 63$$

$$\text{lion} + \text{lion} \times \text{turtle} = 40$$

$$\text{turtle}^2 = 64$$

$$-5(\text{turtle} - \text{pig}) = 10$$

$$\text{lion} - \text{pig}^2 = -79$$

$$\text{elephant} (\text{lion} + \text{turtle}) = 96$$

Complete this chart. Write fractions in their simplest form. Round decimals to the **hundredths place** and percents to the **whole number**. (5.33)

Is the denominator a factor of 10 or 100?

Yes use the butterfly method

$$1 \times 10 = 10 \quad 5 \times ? = 10$$

$$1 \times 100 = 100 \quad 4 \times ? = 100$$

$$1 \times 10 = 10 \quad 5 \times ? = 10$$

No divide the numerator by the denominator

round to the hundredths place.

4 or more let the circled digit rest

$$3 \overline{)1.000}$$

Diagram showing the division of 1.000 by 3. The quotient is 0.333. The third decimal place, 3, is circled in red. An arrow points to it with the text "4 or more let the circled digit rest".

$$6 \overline{)1.000}$$

$$7 \overline{)1.000}$$

$$8 \overline{)1.000}$$

$$9 \overline{)1.000}$$

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{2}$	0.5	50%

#54 Date _____

Find the products. Does it match your estimate?

$$\begin{array}{r} 3.95 \\ \times 2.5 \\ \hline 1975 \\ 7900 \\ \hline 9875 \end{array}$$

almost 4
times 2 1/2
three digits
behind decimals

$$\begin{array}{r} 2.104 \\ \times 1.78 \\ \hline \end{array}$$

2 times
almost 2

$$\begin{array}{r} 45.06 \\ \times 10.2 \\ \hline \end{array}$$

about 45
times 10

$$\begin{array}{r} 5.199 \\ \times 4.7 \\ \hline \end{array}$$

a little more
than 5 times
a little less
than 5

$$\begin{array}{r} 6.049 \\ \times 0.68 \\ \hline \end{array}$$

$$\begin{array}{r} 2.015 \\ \times 0.79 \\ \hline \end{array}$$

$$\begin{array}{r} 5.42 \\ \times 3.25 \\ \hline \end{array}$$

$$\begin{array}{r} 31.18 \\ \times 9.03 \\ \hline \end{array}$$

$$\begin{array}{r} 6.875 \\ \times 5.9 \\ \hline \end{array}$$

$$\begin{array}{r} 45.01 \\ \times 1.98 \\ \hline \end{array}$$

WORD
PROBLEMS

What is eight times the quantity of three and four?

↓
quantity means
parentheses $8(3 + 4) =$

One quarter is what fraction of a dollar? What decimal? What percent?

What is seven eighths of forty-eight?

Order the numbers from smallest to largest.

15.2 12.5 1.25 1.52

smallest _____ _____ largest

2.41 4.12 1.42 1.24

smallest _____ _____ largest

35.06 56.03 36.05 56.3

smallest _____ _____ largest

Compare these numbers (<, >, =)

13.15 13.51

6.022 6.202

24.812 24.813

88.08 8.808

7.199 7.119

5.215 52.15

Solve these problems. (5.48)

$$|-3 - 7| = 10$$

$$|1 - 11| = 10$$

$$|5 - 6| = 1$$

$$9 \times |-8| = 72$$

$$|9 \times (-8)| = 72$$

$$-9 \times |-8| = -72$$

$$(-7)^2 = 49$$

$$-(7^2) = -49$$

$$|-42| \div 7 = 6$$

$$7 \times (-5) = -35$$

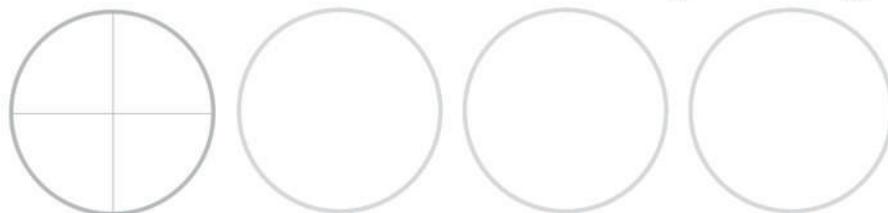
$$-5 \times 7 = -35$$

$$-42 \div 7 = -6$$

Compare these values using these operators ($<$, $>$, $=$).

$$|-11| \leq |-13|$$

$$|-45| \geq |46|$$


$$-15 \leq -|-15|$$

$$19 \leq |-29|$$

$$|32| \geq |-33|$$

$$-|28| \leq |-28|$$

Divide and shade circles to show that $3\frac{3}{4}$ equals $\frac{15}{4}$.

$$3\frac{3}{4} \quad \begin{array}{l} \text{add} \\ \text{multiply} \end{array} \quad 4 \times 3 = 12 \quad 12 + 3 = 15 \quad \frac{15}{4}$$

Find the squares. (5.49)

$$2^2 = 4$$

$$6^2 = 36$$

Find both square roots.

$$\sqrt{16} = 4, -4$$

$$\sqrt{25} = 5$$

$$3^2 = 9$$

$$7^2 = 49$$

$$\sqrt{81} = 9$$

$$\sqrt{1} = 1$$

$$4^2 = 16$$

$$8^2 = 64$$

$$\sqrt{36} = 6$$

$$\sqrt{4} = 2$$

$$5^2 = 25$$

$$9^2 = 81$$

$$\sqrt{64} = 8$$

$$\sqrt{49} = 7$$

#55 Date _____

When the divisor is a decimal, multiply both the dividend and the divisor by ONE (10/10 or 100/100) until the divisor is a whole number.

$$4.2 \div 0.6 = 7$$

$$4.2 \times \frac{10}{10} = 42 \quad 0.6 \times \frac{10}{10} = 6$$

$$42 \div 6 = 7$$

$$6.4 \div 0.8 =$$

$$0.48 \div 0.6 =$$

$$7.2 \div 0.09 =$$

$$0.63 \div 0.07 =$$

$$0.49 \div 0.7 =$$

$$5.6 \div 0.8 =$$

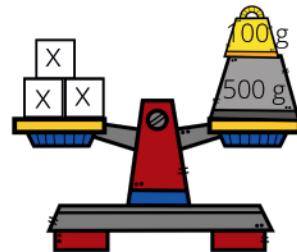
$$\begin{array}{r} 5 \\ 0.9 \overline{)4.5} \\ 45/9=5 \end{array}$$

$$0.6 \overline{)5.4}$$

$$0.3 \overline{)2.1}$$

$$1.1 \overline{)6.6}$$

$$0.5 \overline{)4.5}$$


$$1.3 \overline{)5.2}$$

$$\begin{array}{r} 4 \\ 0.12 \overline{)0.48} \\ 48/12=4 \end{array}$$

$$0.08 \overline{)0.96}$$

$$0.07 \overline{)8.40}$$

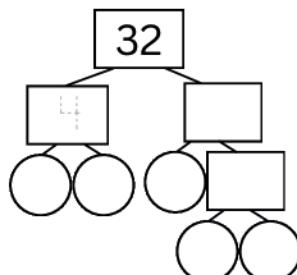
Three identical blocks are on a balanced scale with a 100 gram weight and a 500 gram weight on the other side. What does each block weigh?

What time is 43 minutes before midnight?

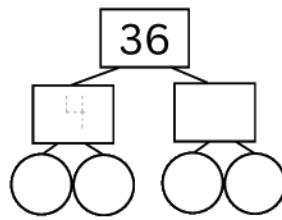
17 of the 20 questions on your test were correct. What percent is that?

Five sixths of the dozen cartons of yogurt are strawberry. How many cartons of strawberry yogurt are there?

12 of the 25 kids in the play are boys. What fraction of the kids in the play are NOT boys? What is that decimal and percent?


List the **factors** of 32: _____

List the **factors** of 36: _____


What is the Greatest Common Factor (GCF) of 32 and 36? _____

Factor the number in the top box of each factor tree. (5.24)

Reduce this fraction to its simplest form two different ways.

prime factorization: _____

prime factorization: _____

$$\frac{32}{36} \quad \frac{32 \div \text{GCF}}{36 \div \text{GCF}} =$$

Cancel common factors from the numerator and denominators.

$$\frac{\text{prime factorization of 32}}{\text{prime factorization of 36}} =$$

List the **factors** of:

10: 1, 2, 5, 10

12: _____

15: _____

18: _____

20: _____

24: _____

Name the greatest common factor (GCF) of:

10 and 12 2 10 and 15 _____

10 and 20 _____ 12 and 15 _____

12 and 18 _____ 12 and 20 _____

15 and 18 _____ 15 and 24 _____

18 and 24 _____ 20 and 24 _____

Simplify these fractions. Divide numerator and denominator by their GCF. (5.26)

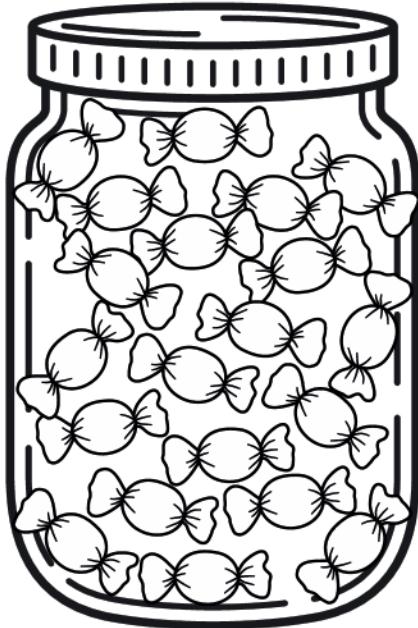
$$\frac{10}{12} \cancel{/\textcolor{red}{2}} = \frac{5}{\textcolor{red}{6}}$$

$$\frac{10}{15} =$$

$$\frac{10}{20} =$$

$$\frac{12}{15} =$$

$$\frac{12}{18} =$$

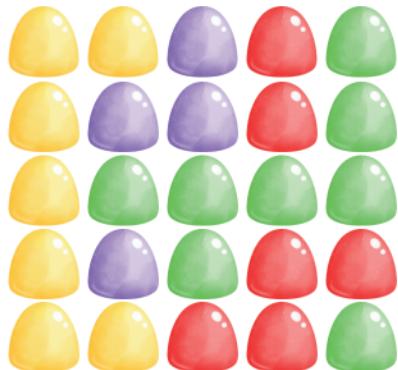

$$\frac{12}{20} =$$

$$\frac{15}{18} =$$

$$\frac{15}{24} =$$

$$\frac{18}{24} =$$

$$\frac{20}{24} =$$


Color the candies in this jar so that:

- 35% of the candies are red
- 30% of the candies are blue
- 20% of the candies are yellow
- 15% of the candies are green

What **fraction** of the candies are:

red _____ blue _____

yellow _____ green _____

	fraction	rename fraction	percent
red	5/25	20/100	20%
purple			
green			
yellow			

What is the ratio of red gumdrops to green gumdrops?

There are 50 beads on the bracelet. 46% of them are yellow. How many are yellow?

24% of the beads are pink. How many are pink?

The rest of the beads are green. What percentage are green?

What fraction (simplest form) of the bracelet is each color:

yellow $\frac{23}{50}$

pink

green

Find the products. (5.54)

$$\begin{array}{r} 15.015 \\ \times 12.3 \\ \hline 184.6845 \end{array}$$

$$\begin{array}{r} 9.112 \\ \times 14.6 \\ \hline \end{array}$$

$$\begin{array}{r} 24.32 \\ \times 15.7 \\ \hline \end{array}$$

$$\begin{array}{r} 11.04 \\ \times 1.97 \\ \hline \end{array}$$

$$\begin{array}{r} 34.45 \\ \times 8.54 \\ \hline \end{array}$$

four digits behind decimals

$$\begin{array}{r} 21.35 \\ \times 6.49 \\ \hline \end{array}$$

$$\begin{array}{r} 18.09 \\ \times 3.9 \\ \hline \end{array}$$

$$\begin{array}{r} 14.18 \\ \times 5.13 \\ \hline \end{array}$$

$$\begin{array}{r} 32.75 \\ \times 9.01 \\ \hline \end{array}$$

$$\begin{array}{r} 15.99 \\ \times 2.57 \\ \hline \end{array}$$

Use the menu prices to add up the cost of each meal. Find each customer's change if they pay with a \$10.00 bill. Line up the decimals! (4.39)

BAKERY TRUCK	
Cupcake	\$3.49
Brownie	\$2.59
Cookie	\$2.47
Sweet Roll	\$3.95
Fruit tart	\$4.98
Soda	\$3.49
Smoothie	\$3.97
Coffee	\$2.54

$$\begin{array}{r} 3.49 \\ + 4.98 \\ \hline \end{array} \quad \begin{array}{r} 10.00 \\ \hline \end{array}$$

#57 Date _____

Calculate multiples of 1%:

$$1\% \text{ of } 60 = 0.6$$

$$5\% \text{ of } 80 =$$

5 times one percent

$$\begin{array}{r} 0.8 \\ \times 5 \\ \hline 4.0 \end{array}$$

$$1\% \text{ of } 100 =$$

$$4\% \text{ of } 60 =$$

$$\begin{array}{r} 0.6 \\ \times 4 \\ \hline \end{array}$$

$$3\% \text{ of } 100 =$$

$$2\% \text{ of } 60 =$$

Calculate multiples of 10%:

$$10\% \text{ of } 60 = 6$$

twice ten percent

$$20\% \text{ of } 60 =$$

5 times ten percent or half of 60

$$50\% \text{ of } 60 =$$

$$10\% \text{ of } 30 =$$

$$30\% \text{ of } 30 =$$

$$40\% \text{ of } 30 =$$

$$10\% \text{ of } 80 =$$

$$50\% \text{ of } 80 =$$

$$90\% \text{ of } 80 =$$

Break each percent into friendly numbers:

$$10\% \text{ of } 40 = 4$$

half of ten percent

$$5\% \text{ of } 40 =$$

10% + 5%

$$15\% \text{ of } 40 =$$

10% + 10% + 5% OR 40/4

$$25\% \text{ of } 40 =$$

25% times 3

$$75\% \text{ of } 40 =$$

$$10\% \text{ of } 100 =$$

$$5\% \text{ of } 100 =$$

$$15\% \text{ of } 100 =$$

$$25\% \text{ of } 100 =$$

$$75\% \text{ of } 100 =$$

$$10\% \text{ of } 90 =$$

$$5\% \text{ of } 90 =$$

$$15\% \text{ of } 90 =$$

$$25\% \text{ of } 90 =$$

$$75\% \text{ of } 90 =$$

Break each percent into friendly numbers:

18% = 10% + 5% + 1% + 1% + 1%

$$18\% \text{ of } 40 =$$

$$25\% \text{ of } 36 =$$

90% = 100% - 10%

$$90\% \text{ of } 70 =$$

$$4\% \text{ of } 50 =$$

$$50\% \text{ of } 48 =$$

$$11\% \text{ of } 200 =$$

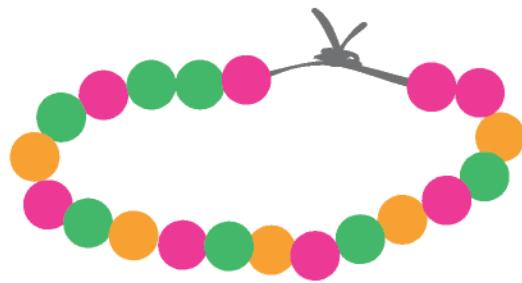
$$30\% \text{ of } 70 =$$

$$16\% \text{ of } 50 =$$

$$27\% \text{ of } 50 =$$

$$5\% \text{ of } 20 =$$

$$99\% \text{ of } 200 =$$


$$8\% \text{ of } 200 =$$

$$95\% \text{ of } 140 =$$

$$72\% \text{ of } 175 =$$

$$22\% \text{ of } 150 =$$

	fraction	rename fraction	percent
pink			
green			
orange			

What is the ratio of green beads to orange beads?

You earned 80% on a test with 50 questions. How many questions did you answer correctly?

What time is 35 minutes before midnight?

Three fifths of the 100 passengers on the plane chose a chicken meal. The rest of them chose beef. How many of them chose beef?

Write fractions equal to $\frac{1}{2}$ and $\frac{3}{4}$ and subtract the smaller fraction from the larger fraction.

Solve. When multiplying, if the signs are the SAME the result is positive, and when the signs are DIFFERENT, the result is negative. Remember PEMDAS.

$$-7 \times 8 = -56$$

absolute value
 $|2 - 17| =$

$$18 \div (-3) =$$

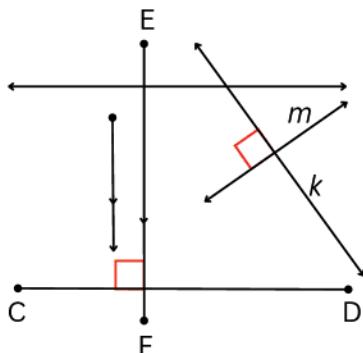
absolute value
 $3 \times |-9| = 27$

$$1 + (-3 \times 7) =$$

$$-10 + |-3 \times 4| =$$

$$-6(2 \times 4) =$$

$$6^2 + (-9) \times 4 =$$


$$|-56 \div 7| + (-8) =$$

$$-72 \div |-9| =$$

$$(-5 + 3) \div -1 =$$

$$|5^2 - 6^2| =$$

#58 Date _____

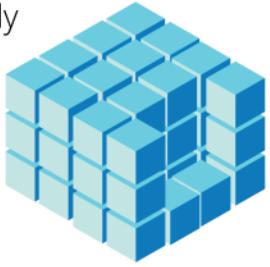
1. Trace the horizontal line orange.
2. Which line segment is parallel to the ray? _____
3. Name the two perpendicular line segments:
_____ and _____
4. Trace one oblique line red and one green.
5. Name the two perpendicular lines:
_____ and _____

What angle do clock hands pointing to 9:00 make?

Draw two parallel line segments.

Draw a pair of intersecting lines that are perpendicular.

Draw four line segments the same length at right angles to each other. What shape did you draw?

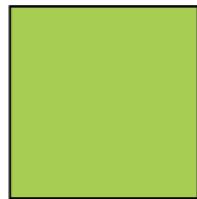

What word begins with E and ends with E, but only has one letter?

- Start at point X.
- Draw a line segment XY.
- From point Y, draw a 5" vertical line perpendicular to XY.
- Label that point A.
- Draw a line segment parallel to and the same length as XY from point A directly west.
- Label that point B.
- Draw line segment BC.
- Draw line segment CX.
- Draw line segment XB.
- Draw an oblique line segment from point D to point A.
- Draw another oblique line segment from point Z to point Y.

• •

D •
• C
Z •

X • Y •


<p>If the perimeter of a square is 5 feet, how many inches long is each side?</p>	<p>This pallet of boxes is stacked in a warehouse. Boxes are only removed from the top. How many boxes are left on the pallet?</p>
<p>How many seconds are in 1 hour?</p>	<p>You made 5 dozen cookies. How many cookies is that?</p> <p>You want to keep one dozen cookies and share the rest equally among your six best friends. How many cookies will you give each friend?</p>

Draw a HORIZONTAL line and a VERTICAL line to divide this square into FOURTHS.

Use two OBLIQUE lines to divide this square into FOURTHS.

Draw 3 HORIZONTAL lines to divide this square into FOURTHS.

Draw 3 VERTICAL lines to divide this square into FOURTHS.

Solve. When multiplying, if the signs are the SAME the result is positive. And when the signs are DIFFERENT, the result is negative. Remember PEMDAS.

$$|-6 \times 8| =$$

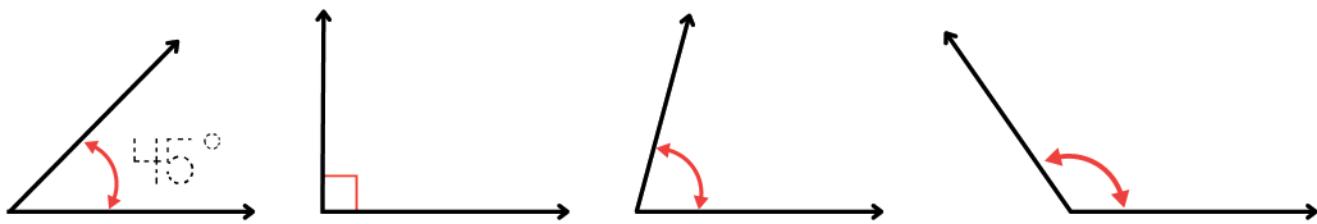
$$5^2 - 2(3 \times 4) =$$

$$-24 \div 6 =$$

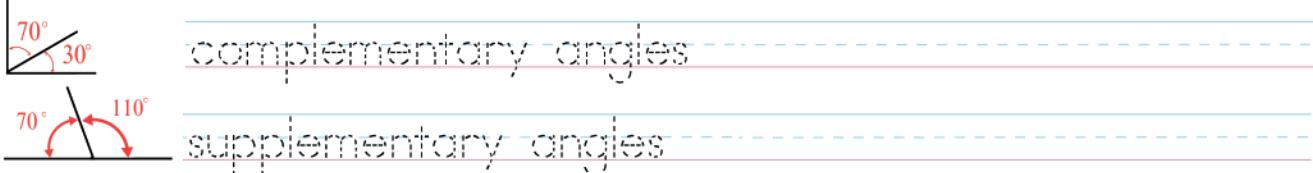
$$-8 \times (3 + 4) =$$

$$-8 \times 3 + 4 =$$

$$|-8| \times 3 + 4 =$$


$$-|12 - 3 \times 5| =$$

$$(-9)^2 - 7^2 =$$


$$-3 + (-9) =$$

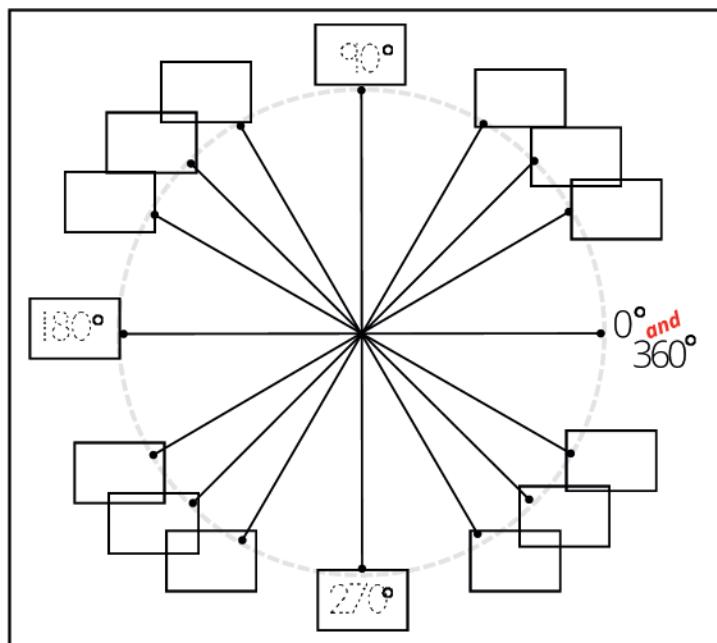
#59 Date _____

Use your protractor to measure each angle. Use units (degree).

COMPLEMENTARY angles add up to 90 degrees.
SUPPLEMENTARY angles add up to 180 degrees.

Draw:

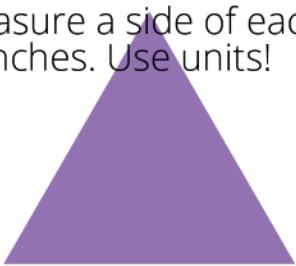
Right Angle (include the small square)


Acute Angle

Straight Angle

Obtuse Angle

Reflex Angle


Fill in the boxes around this circle with the correct angle measurements. Use your reference pages if you need to.

#60 Date _____

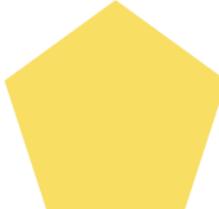
Measure a side of each REGULAR polygon with a ruler to find each side length in inches. Use units!

name: triangle

number of sides: 3

side length: 1.5 in.

perimeter: 4.5 in.

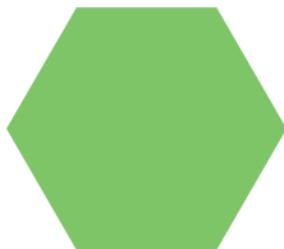


name: square,
quadrilateral

number of sides: _____

side length: _____

perimeter: _____

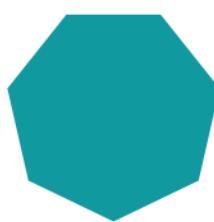


name: _____

number of sides: _____

side length: _____

perimeter: _____

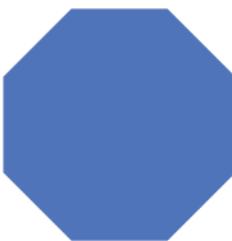


name: _____

number of sides: _____

side length: _____

perimeter: _____



name: _____

number of sides: _____

side length: _____

perimeter: _____

name: _____

number of sides: _____

side length: _____

perimeter: _____

Write each **quadrilateral** term twice.

trapezoid

square

parallelogram

rectangle

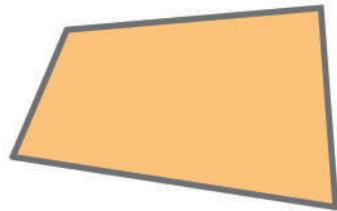
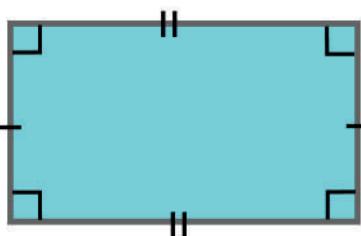
rhombus

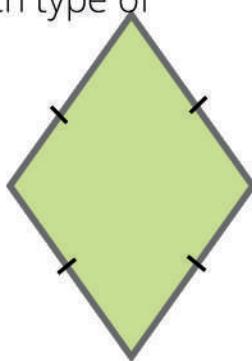
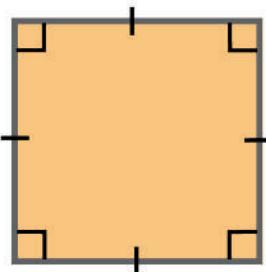
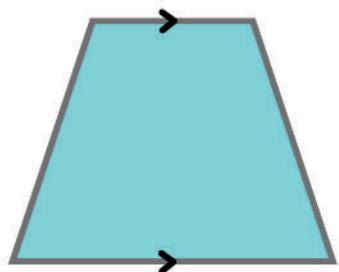
Match each term to its properties.

• Has two pairs of parallel sides, right angles and congruent sides.

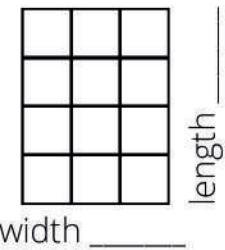
• Has two pairs parallel sides, and four right angles.

• Has only one pair of parallel sides.

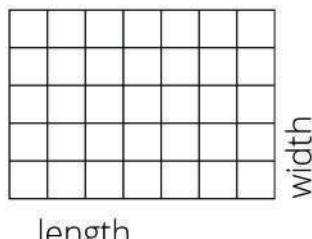



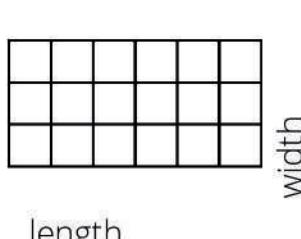




• A parallelogram with four congruent sides, but it does not have to have 4 right angles.

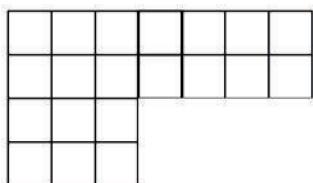


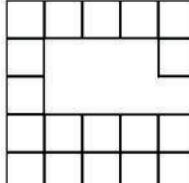
• Has 2 pairs of parallel sides, opposite each other.


Use the flow chart from your reference pages to identify each type of quadrilateral.

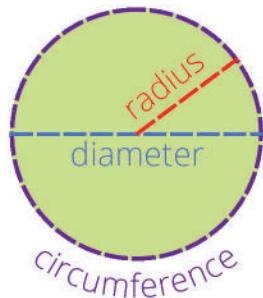

Find the perimeter and area of each rectilinear shape.


width _____
perimeter _____ units
area _____ units² what?
why?


length _____
perimeter _____ units
area _____ units²

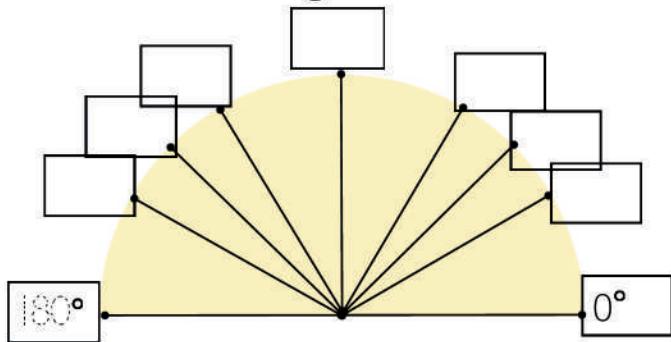

width _____
perimeter _____ units
area _____ units²

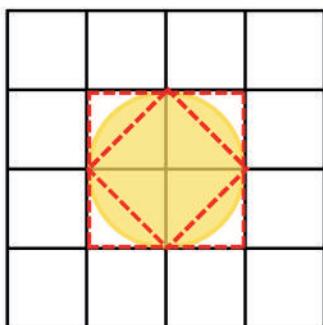
perimeter _____ units
area _____ units²



perimeter _____ units
area _____ units²

perimeter _____ units
area _____ units²

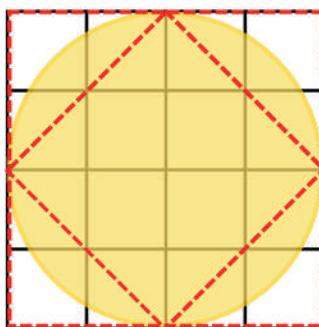

#61 Date _____


$$\text{area} = \pi r^2 \quad r = \text{radius}$$

$$\text{circumference} = 2\pi r$$

Fill in each angle measure.

Use the grid to estimate the area of each shape. Each square on the grid is one unit squared. Draw and label the radius, diameter and circumference.

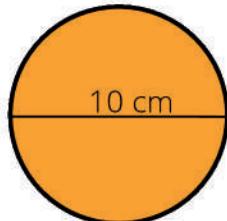


The small square is 2 square units.
The big square is 4 square units.
A good estimate will be between the upper and lower estimates.

estimate: 3 units²

calculate: _____

$$\text{area} = \pi r^2 = \pi \times (1)^2$$

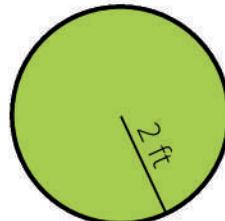

The small square is 8 square units.
The big square is 16 square units.
A good estimate is 12 square units, midway between the upper and lower estimates.

estimate: 12 units²

calculate: _____

$$\text{area} = \pi r^2 = \pi \times (2)^2$$

Find the dimensions of each circle based on the given dimension. (not to scale)

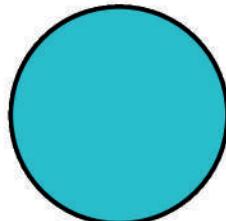


radius _____

diameter _____

circumference _____

area _____

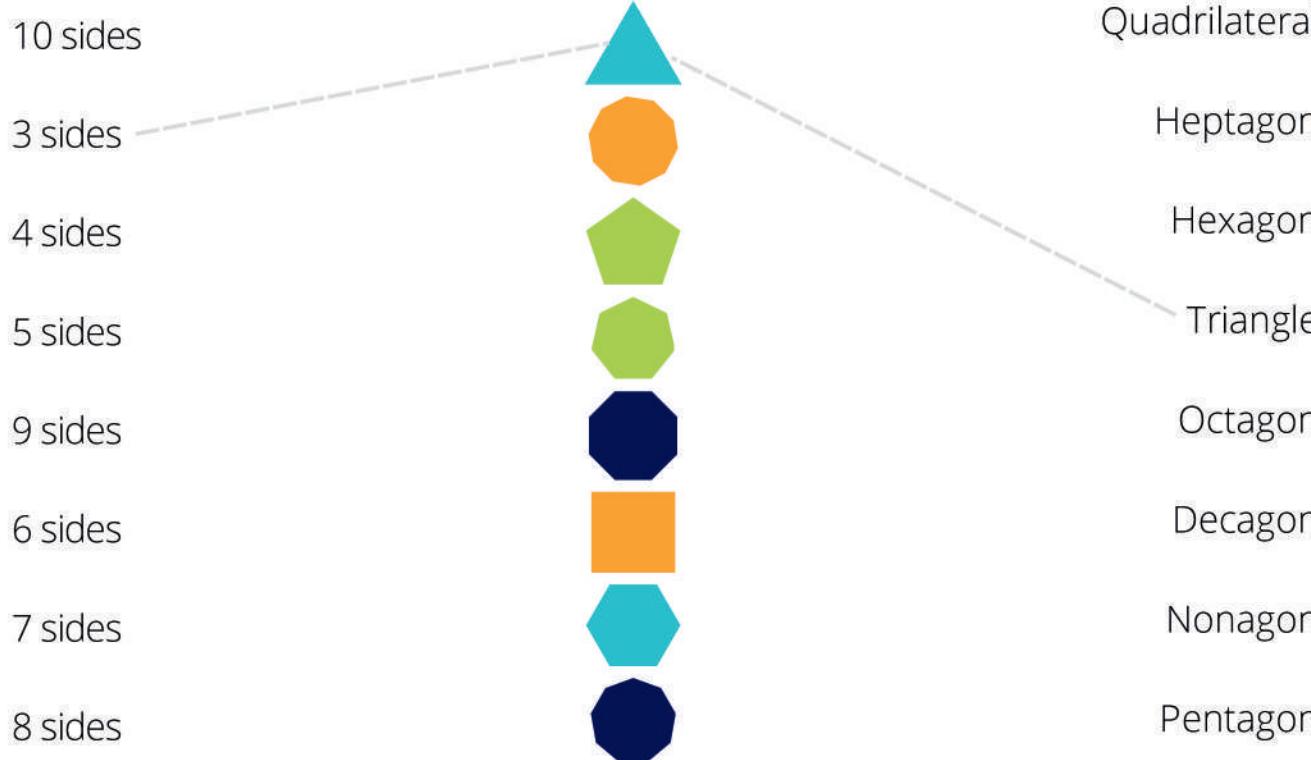


radius _____

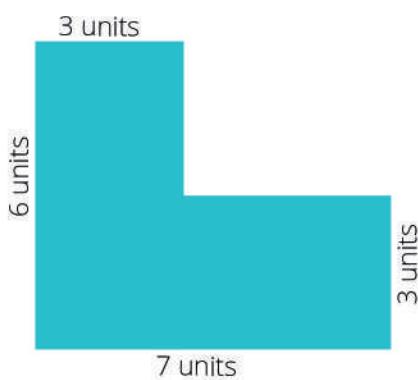
diameter _____

circumference _____

area _____


radius _____

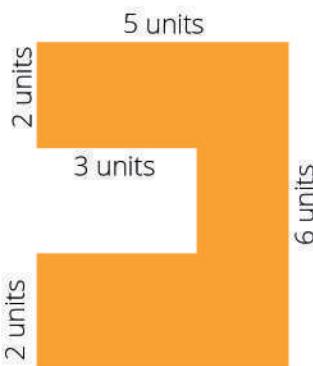
diameter _____


circumference 314 cm

area _____

Draw lines to match the polygons across all three columns.

Find the missing dimensions, then divide each shape into two or three rectangles. Find the perimeter and the area of each small rectangle, then add up those areas to find the area of the WHOLE shape. All of the angles are RIGHT ANGLES.

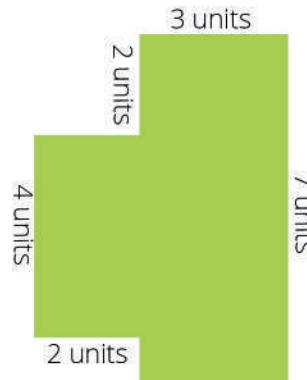


$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

perimeter _____ units

area _____ units²


whole rectangle (5 x 6) minus cutout

$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

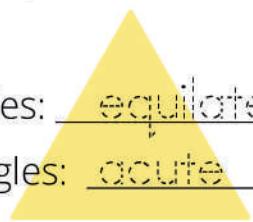
$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

perimeter _____ units

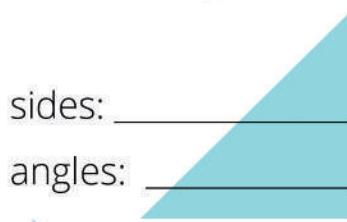
area _____ units²

$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

$$\text{length} \times \frac{\text{width}}{\text{width}} = \frac{\text{area}}{\text{area}}$$

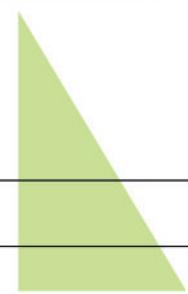

perimeter _____ units

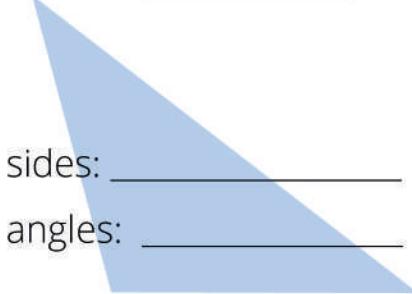
area _____ units²

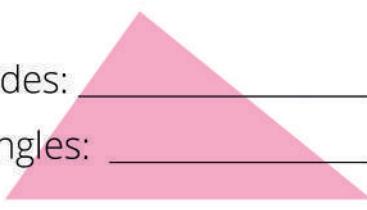

#63 Date _____

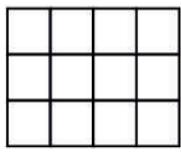
Use your ruler and protractor to classify each triangle by its sides and angles.

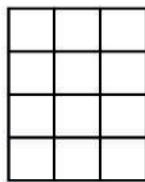
sides: equilateral
angles: acute

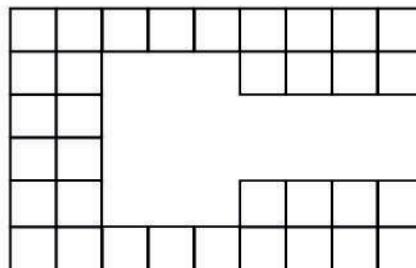

sides: _____
angles: _____


sides: _____
angles: _____

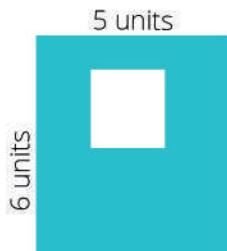

sides: _____
angles: _____


sides: _____
angles: _____

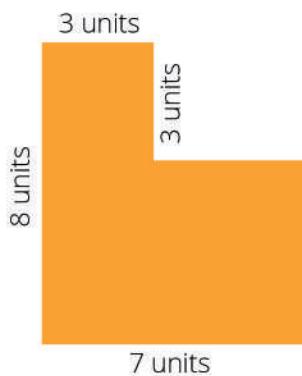

sides: _____
angles: _____


Find the area and perimeter of each shape.

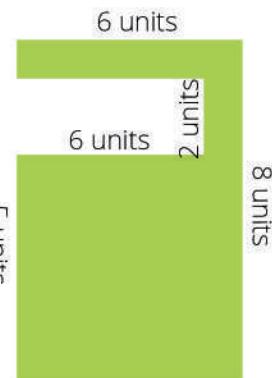
3 rows, 4 columns
 $\underline{\quad} \times \underline{\quad} = \underline{\quad}$
perimeter _____
area _____



4 rows, 3 columns
 $\underline{\quad} \times \underline{\quad} = \underline{\quad}$
perimeter _____
area _____


perimeter _____
area _____

Find the perimeter and area of each rectilinear shape. Assume all angles are right angles.



The cutout is 4 sq. units

perimeter _____ units
area _____ units²
118

perimeter _____ units
area _____ units²

perimeter _____ units
area _____ units²

Draw lines to match each quadrilateral across all three columns.

rectangle

- Has two pairs of parallel sides, right angles and congruent sides.

rhombus

- Has two pairs parallel sides, and four right angles.

trapezoid

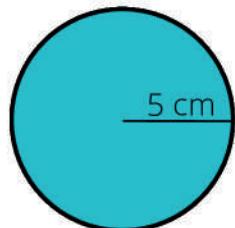
- Has only one pair of parallel sides.

square

- A parallelogram with four congruent sides, but it does not have to have 4 right angles.

parallelogram

- Has 2 pairs of parallel sides, opposite each other.

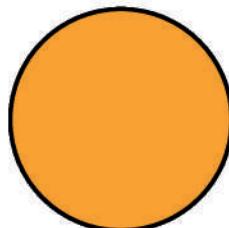

WORD
PROBLEMS

What is eight times the quantity of four and three?

What is half of eight increased by the square root of forty-nine?

Use a ruler to draw a rectangle with a length of 10cm and a width half the length. Find the perimeter and area of the rectangle.

Find the dimensions of each circle based on the given dimension. (not to scale)

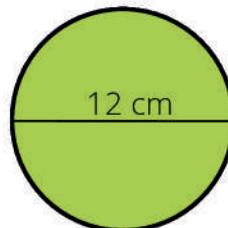


radius _____

diameter _____

circumference _____

area _____



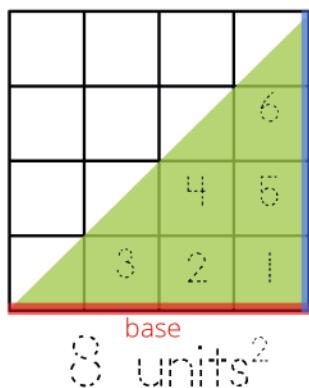
radius _____

diameter _____

circumference _____

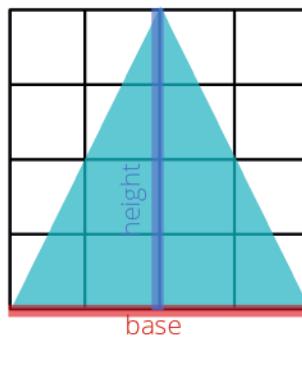
area 12.56 cm²

radius _____


diameter _____

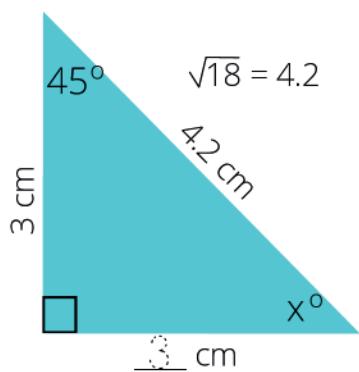
circumference _____

area _____


#64 Date _____

Use the grid to estimate the area of each shape. Each square on the grid is one unit squared.

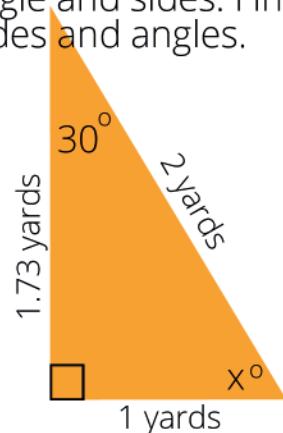
The whole square is 16 square units. The triangle is half of that. You can also count the squares and add them up.


$$\text{area} = \frac{1}{2} (4)(4)$$

base
height
 $\triangle \text{area} = \frac{1}{2} \text{bh}$

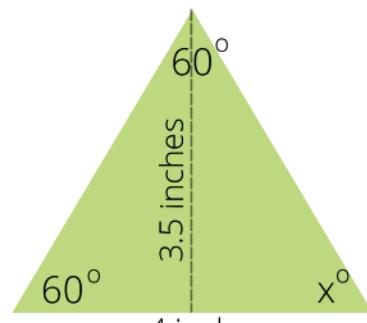
b (base) and h (height) must be perpendicular to each other

Find and label the missing angle and sides. Find the area and perimeter, then classify each triangle by its sides and angles.



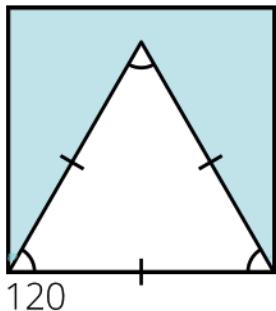
perimeter 10.24 cm

area 4.5 cm²


$3 + 3 + 4.2 = 10.24$

$\frac{1}{2}(3 \times 3) = \frac{9}{2} = 4\frac{1}{2}$

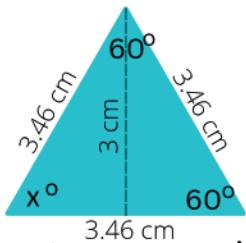
perimeter _____


area _____

perimeter _____

area _____

The sides of the equilateral triangle are 6 inches. (not to scale)

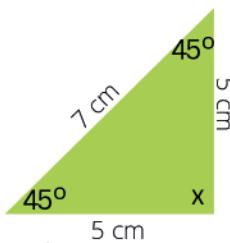


Square:
Sides _____
Angles _____
Perimeter _____
Area _____

Triangle:
Sides _____
Angles _____
Perimeter _____

What is your best guess of the area of the shaded part of the figure?

Find the missing angle, the perimeter & area, then classify each triangle by sides (equilateral, isosceles, scalene) and angles (acute, right, obtuse). Use units.


x _____

perimeter _____

area _____

sides: equilateral

angles: acute

x _____

perimeter _____

area _____

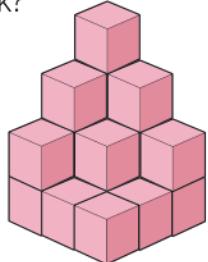
sides: _____

angles: _____

Find the quotients. (5.17)

$$8 \overline{)924}$$

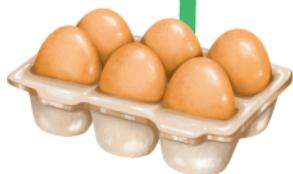
$$7 \overline{)781.2}$$


$$12 \overline{)1374}$$

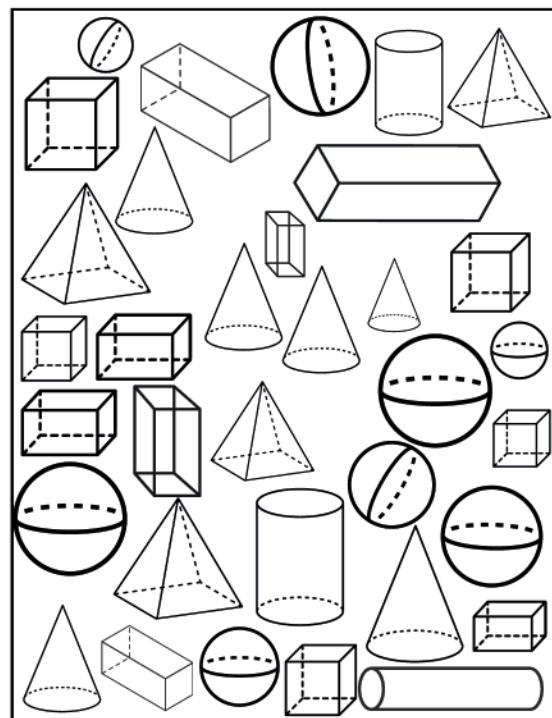
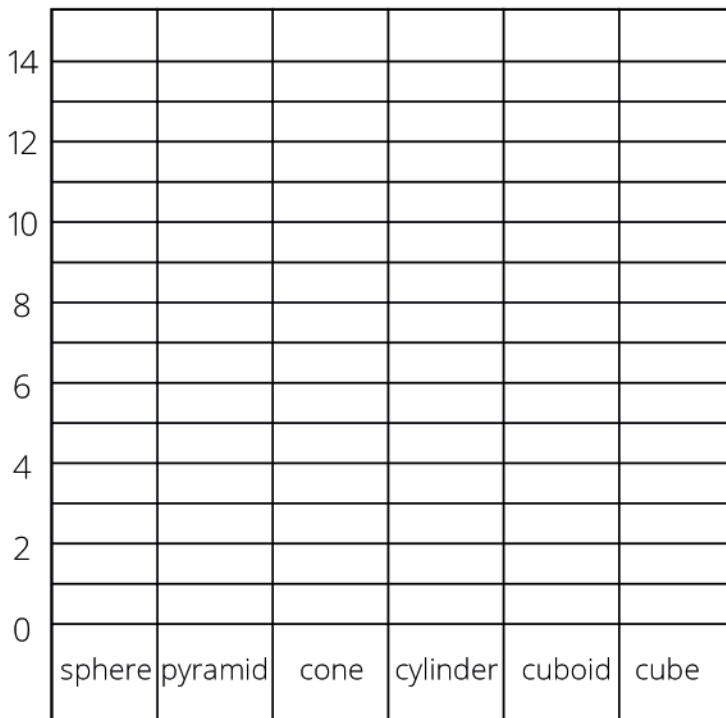
$$15 \overline{)363}$$

$$9 \overline{)803.7}$$

You have three piles of books, with 7, 9 and 5 books respectively. If you redistribute the books so each pile has equal amounts, how many books will be in each pile?


The bottom layer has nine cubes. How many cubes are in this stack?

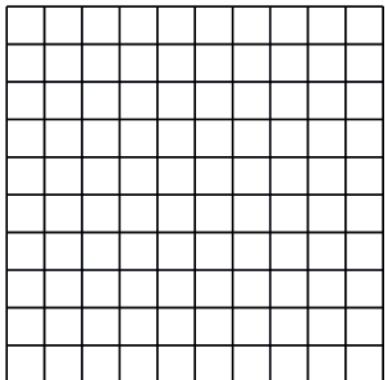
If you take a \$10 bill to the store, how many eggs can you buy?



How much money will you have left over?

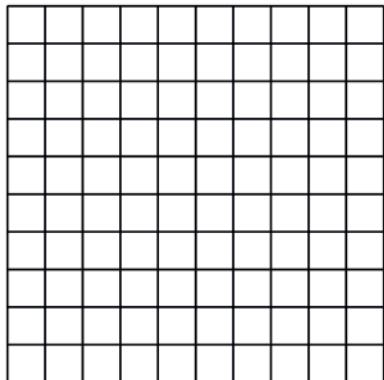
Draw a picture to show that the mixed number one and one fourth and the top-heavy fraction, five fourths are equivalent.

#65 Date _____

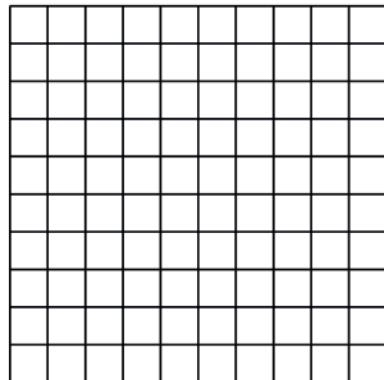
Color one space for each 3D shape to make a bar graph of shapes.



How many cents is $\frac{1}{4}$ of a dollar? What percent of a dollar is that?


How many cents is $\frac{1}{2}$ of a dollar? What percent of a dollar is that?

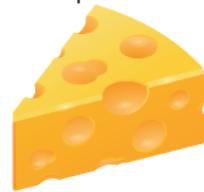
Draw rectangles with the following areas:


18 units²

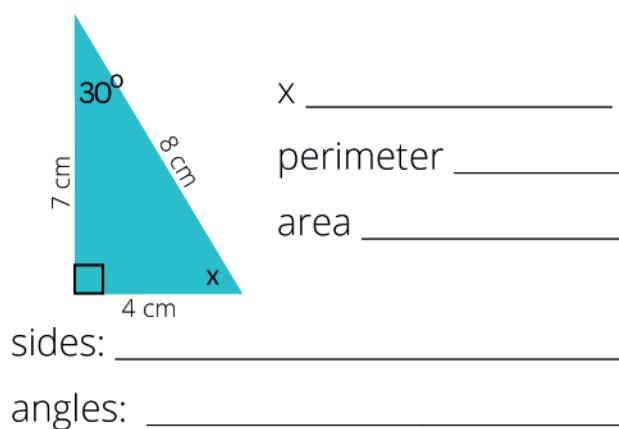
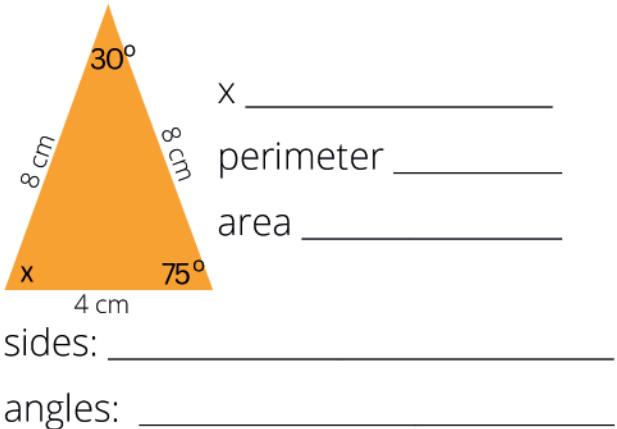
32 units²

25 units²

Now draw a diagonal line across each rectangle, dividing it into TWO triangles. Color one of them. What is the area of each triangle?

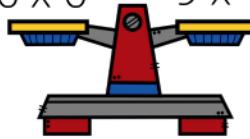

_____ units²

_____ units²



_____ units²

A cheese pizza costs \$9.95 plus \$0.45 per topping. If your pizza was \$11.75, how many toppings did you get?

The total price of 5 pounds of cheese was \$28.75. What was the price per pound?



What is the difference when you subtract nineteen and five tenths from twenty-seven and eighteen hundredths?

Balance these equations. Remember to follow the Order of Operations. (3.38)

$$6 \times 6 = 9 \times 4$$

$$8^2 - 2^2 = 10 \times \underline{\quad}$$

$$8(4 + \underline{\quad}) = 4 \times 14$$

$$4 \times 3 = 6^2 \div \underline{\quad}$$

$$\underline{\quad} \times 8 = 1 + 3 \times 5$$

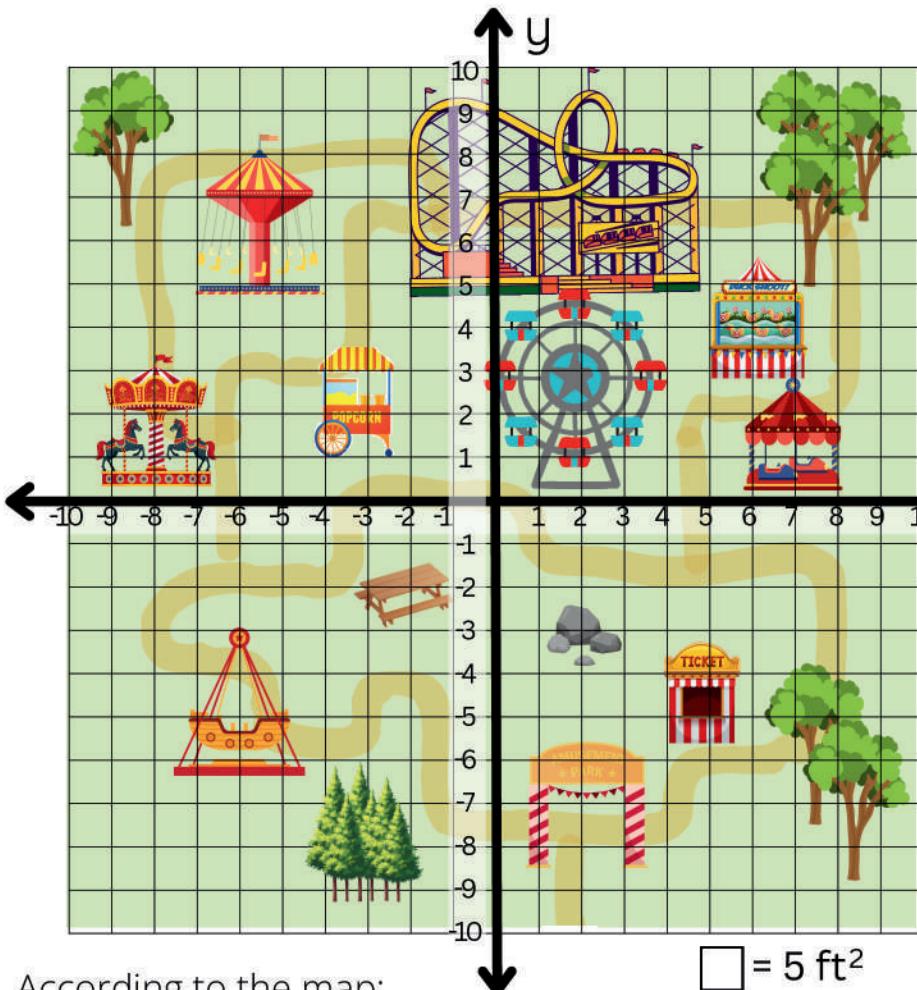
$$8 + \underline{\quad} = 4 \times 3$$

$$5^2 = 35 - \underline{\quad}$$

$$7 - 7 = 5 \times \underline{\quad}$$

$$9 \times 8 = \underline{\quad} \times 6$$

$$2 + 6 \times 8 = 10^2 \div \underline{\quad}$$


$$3 \times \underline{\quad} = 4^2 + 2$$

$$2 + 3 = 40 \div \underline{\quad}$$

$$54 \div \underline{\quad} = \sqrt{36}$$

$$8 \times \underline{\quad} = 9^2 + 7$$

#66 Date _____

Match each item and ordered pair:

	(-6, 7)
	(-3, -8)
	(8, -6)
	(6, 4)
	(-3, 2)

Write each location as an ordered pair:

	(-5, 5)

Draw lines to match each quadrilateral to its most specific name.

rectangle

square

parallelogram

rhombus

trapezoid

Solve using the Order of Operations (PEMDAS). (3.38)

$$3^2 - \sqrt{4} = \underline{\hspace{2cm}}$$

$$6^2 \div 4 = \underline{\hspace{2cm}}$$

$$18 \div \sqrt{36} = \underline{\hspace{2cm}}$$

$$3 - 54 \div 9 = \underline{\hspace{2cm}}$$

$$8(-5 - 1) \div 12 = \underline{\hspace{2cm}}$$

$$-9 + 3 \times 6 = \underline{\hspace{2cm}}$$

$$5 + 3 - 4^2 = \underline{\hspace{2cm}}$$

$$5^2 - \sqrt{81} = \underline{\hspace{2cm}}$$

$$12 + -6 \times 2 = \underline{\hspace{2cm}}$$

$$7(2 \times 4) = \underline{\hspace{2cm}}$$

One fifth of the 30 students earned an A on the test. One half of the students who earned an A on the test were girls.

1. How many students earned an A on the test?
2. How many girls earned an A on the test?
3. What is the ratio of girls who earned an A to total students?

The operators are missing! Insert the correct operator (+, -, \times , \div) in each yellow circle to make the number sentence true. All answers have been simplified.

$$\frac{2}{3} \bigcirc \frac{1}{4} = \frac{2}{12}$$

$$\frac{1}{4} \bigcirc \frac{3}{4} = \frac{3}{16}$$

$$\frac{2}{3} \bigcirc \frac{1}{4} = \frac{5}{12}$$

$$\frac{1}{2} \bigcirc \frac{1}{3} = \frac{1}{6}$$

$$\frac{1}{2} \bigcirc \frac{2}{5} = \frac{2}{10}$$

$$\frac{1}{6} \bigcirc \frac{1}{3} = \frac{1}{2}$$

$$\frac{1}{2} \bigcirc \frac{1}{4} = \frac{3}{4}$$

$$\frac{1}{4} \bigcirc \frac{3}{4} = \frac{1}{3}$$

Find a common denominator, then add and subtract the fractions. Simplify.

$$\frac{8}{3} - \frac{13}{4} = \frac{5}{12}$$

$$\frac{5}{8} - \frac{14}{28} = \frac{1}{8}$$

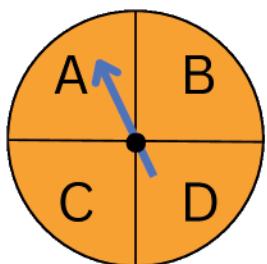
$$\frac{2}{3} - \frac{5}{12} =$$

$$\frac{1}{2} + \frac{2}{3} =$$

$$\frac{1}{2} + \frac{5}{6} =$$

$$\frac{1}{2} - \frac{1}{3} =$$

$$\frac{1}{3} + \frac{1}{4} =$$


$$\frac{5}{6} - \frac{5}{12} =$$

$$\frac{3}{4} - \frac{7}{12} =$$

$$\frac{3}{4} - \frac{3}{8} =$$

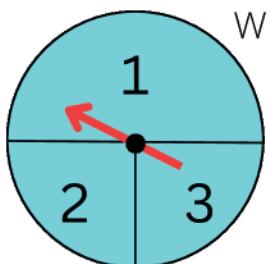
$$\frac{7}{8} - \frac{1}{4} =$$

$$\frac{1}{4} + \frac{5}{8} =$$

The circle is divided into 4 equal parts. If you spin the arrow, what is the probability (fraction) that it will stop on a vowel? What is the chance (percentage)?

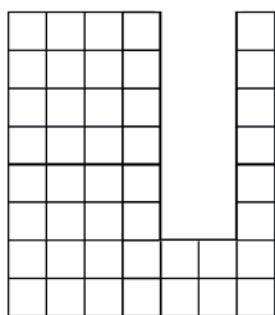
$$\text{probability} = \frac{\text{\# of vowels}}{\text{\# of sections}}$$

chance = convert the fraction to a decimal

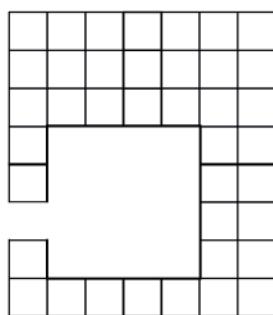

What are the probability and chance the arrow will land on a consonant?

What is the probability of rolling an even number on a die? What is the chance?

$$\text{probability} = \frac{\text{\# of even}}{\text{total \#}}$$

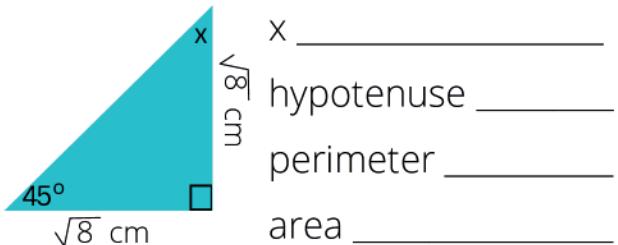

chance =

6 sides of a die:

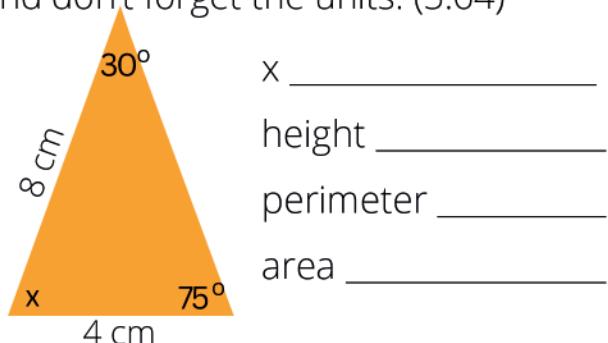

remember to simplify!

What fraction names the probability that the spinner will stop in:
 The section labeled 1.
 A section with an even number.
 A section with an odd number.

perimeter:


area:

perimeter:


area:

Find the missing angle, the perimeter & area, then classify each triangle by sides and angles. Use a calculator to find roots and don't forget the units. (5.64)

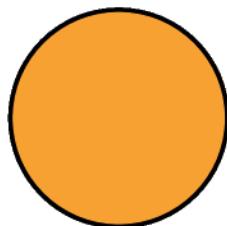
Classification:

sides _____
angles _____

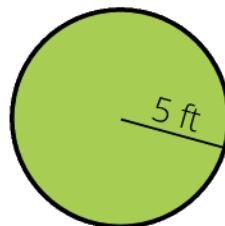
sides _____
angles _____

Find the quotients. (5.17)

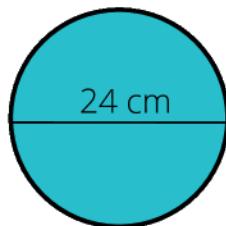
$$11 \overline{)2585}$$


$$9 \overline{)1422}$$

$$17 \overline{)14365}$$


$$15 \overline{)1518}$$

$$12 \overline{)1170}$$


Find the dimensions of each circle based on the given dimension. (not to scale)

radius _____
diameter _____
circumference _____
area 153.86 in²

radius _____
diameter _____
circumference _____
area _____

radius _____
diameter _____
circumference _____
area _____

#69 Date _____

set: {34, 15, 23, 18, 23}	set: {46, 19, 9, 42, 19}
order: { 15, 18, 23, 23, 34 }	order: { }
mean: $113/5=22.6$	median: 23
mode: 23	range: 34

Your soccer coach keeps this chart to track the progress of your team.

(team score us/ them)	Scrambled Legs Spring Season individual scores per game					
	you	Ellie	Sam	Fran	Jose	Jerome
Game 1: 8/5	2	2	2	0	2	0
Game 2: 4/6	0	2	0	2	0	0
Game 3: 8/7	2	2	2	0	2	0
Game 4: 12/4	4	2	2	2	2	0
Game 5: 8/13	2	0	0	4	2	0

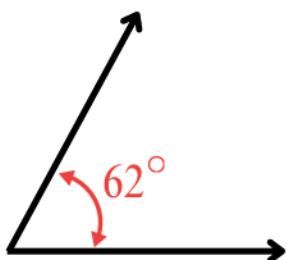
For the first five games:

What was your mean score?

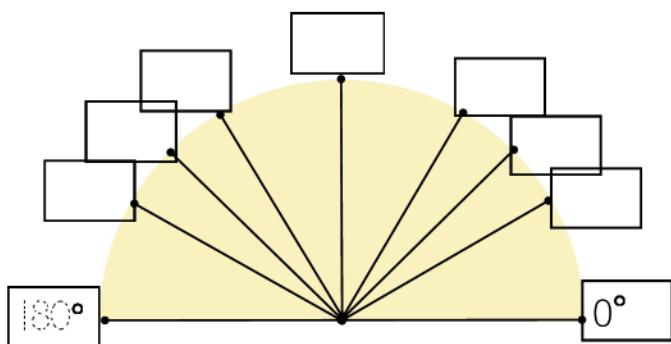
What was Fran's mean score?

What was your team's mean score?

What percent of the games did your team win?


What percent of the games did your team lose?

Which player on your team is the most likely to score points?


Who on your team is the least likely to score points?

What is your team's median score?

Draw and find the complement and the supplement of this angle.

Fill in each angle measure.

Your scores for the spelling tests are 19, 16, 20, 17, 18, 16 and 20. There were 20 points possible on each test. Find the following:

mean _____ median _____ mode _____ range _____

What is your overall test score in spelling? (Find the MEAN percentage)

$$\text{percent} = \frac{\text{mean} \times 5}{20 \times 5} = \frac{\text{mean}}{100} \leftarrow \text{percent}$$

Trace then write each term, then draw a line to match each term to its definition.

average

• the middle number when a set of values is arranged from smallest to largest.

chance

• The number that appears most frequently.

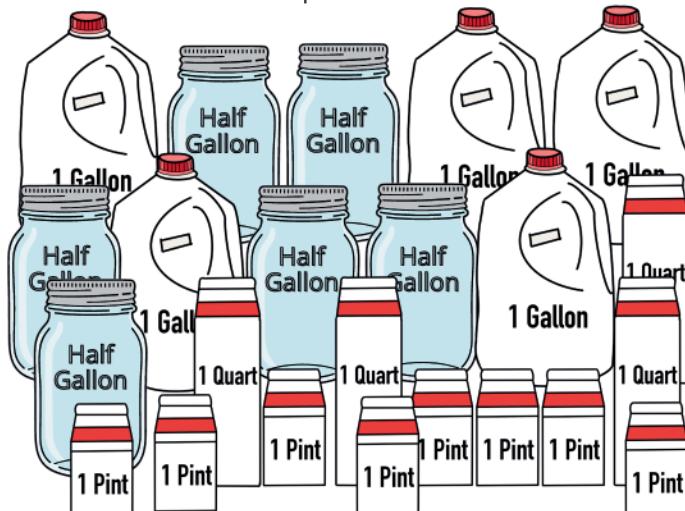
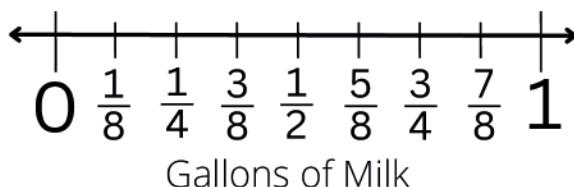
probability

• Also known as the mean, we add all of the addends, then divide the SUM by the number of addends.

median

• The distance between the highest and the lowest numbers.

mode



• The likelihood that something will happen, stated as a fraction.

range

• The likelihood that something will happen, stated as a percentage.

#70 Date _____

We are collecting milk for the food bank. Use an X to represent each amount on the line plot.

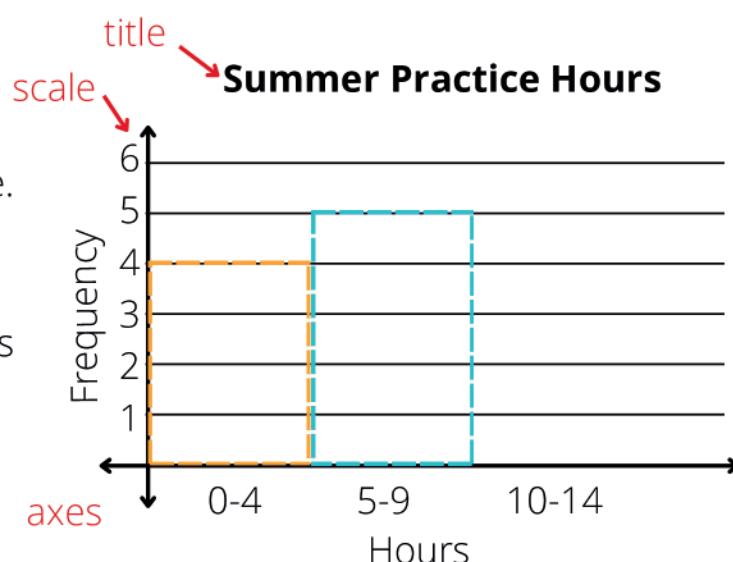
How much milk have you collected?

Histogram

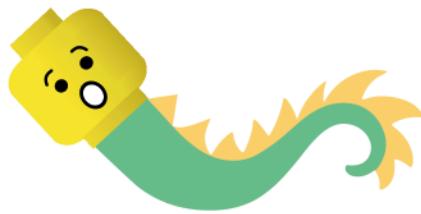
Histograms use bins to display the frequency of numerical values in a data set. The bins are organized into equal, non-overlapping intervals. Since the numerical values show a continuous range, the bins touch.

Step 1: This is how many hours you practiced piano each week all summer. Create a frequency table of these values: 3, 7, 2, 4, 10, 8, 5, 12, 4, 7, 9, 9, 11

Make sure the intervals are equal and don't overlap.


Value	Tally	Frequency
0-4		
5-9		
10-14		

Step 2: Set up your graph. Title it. Label the axes and include a scale.


Draw and color the bins so they represent your frequency chart. The bins touch because the values are continuous.

mean _____ mode _____

median _____ range _____

What has a *head* and a *tail*, but no body?

— 18 — -16 — 7 — 3 — 5 —

Solve using the Order of Operations (PEMDAS). (3.38)

A $2(6^2 \div 4) = \underline{\hspace{2cm}}$

T $5 - 5 \times 3 = \underline{\hspace{2cm}}$

E $3\sqrt{100} \div 5 = \underline{\hspace{2cm}}$

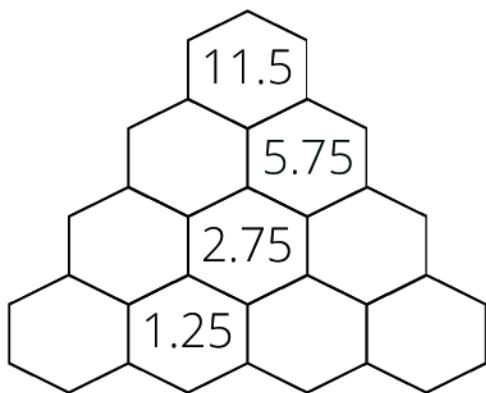
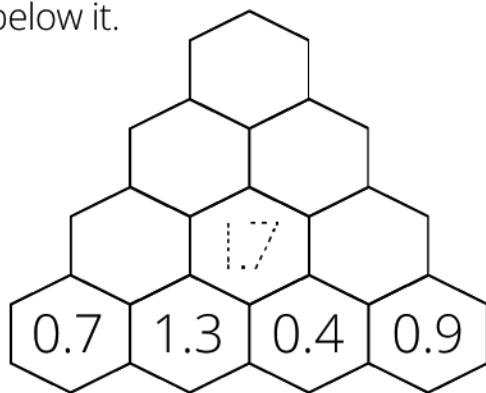
R $4^2 - 4\sqrt{25} = \underline{\hspace{2cm}}$

I $2(5 + 4) \div 3 = \underline{\hspace{2cm}}$

C $2^3 \div 4 - 3 \times 6 = \underline{\hspace{2cm}}$

O $\sqrt{49} = \underline{\hspace{2cm}}$

M $8(3 + 4) = \underline{\hspace{2cm}}$



U $8 \times 5 \div 4 = \underline{\hspace{2cm}}$

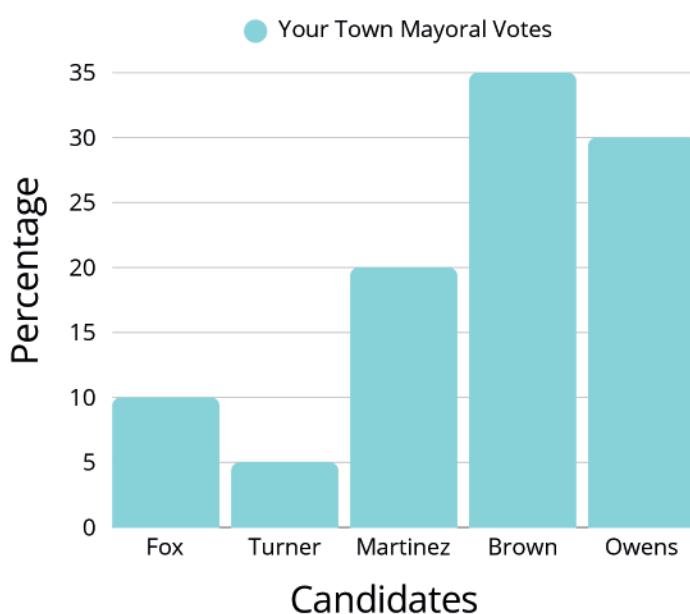
N $\sqrt{36} - 1 = \underline{\hspace{2cm}}$

S $6 \times 4 - 3 \times 9 = \underline{\hspace{2cm}}$

F $5(3 + 3) = \underline{\hspace{2cm}}$

Find the missing numbers in each empty hexagon by adding the two numbers below it.

Write operators ($\times, \div, +, -$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (3.38)


4^2	\div	2	$-$	3^2	$=$	-1
2^3	7		1	$=$	1	
-2	9		2	$=$	5	
=	=	=	=	=	=	
0	5		6	$=$	-6	

12	-	3	\times	5	$=$	-3
0	2		1	$=$	3	
6^2	4		5	$=$	4	
=	=	=	=	=	=	
36	3^2		0	$=$	4	

3^2	$-$	$18 \div 2$	$=$	0
5	8^2	4^2	$=$	1
2	8	8	$=$	2
=	=	=	=	=
-1	10	0	$=$	0

#71 Date _____

1000 residents of your town voted for a new mayor. These are the results. The scale on the y axis is the percentage of voters for each candidate.

How many residents voted for each candidate?

$$10\% \text{ of } 1000 = 1000 \times 0.10 = 100$$

Fox _____

$$1000 \times 0.05 =$$

Turner _____

Martinez _____

Brown _____

Owens _____

Do the votes for the candidates add up to the total number of voters? _____

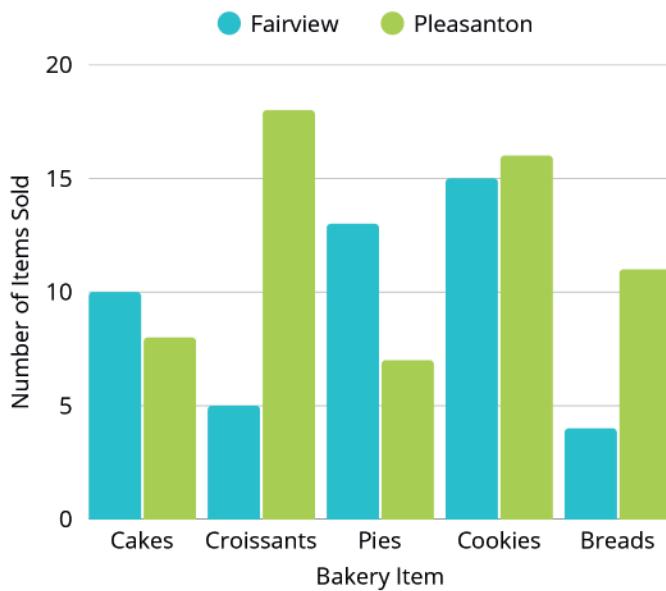
What percent of voters did not vote for Martinez? _____

Double Bar Graph

Your Grandma owns two bakeries, one in Fairview and one in Pleasanton. She needs your help to figure out which items sell best. You create a graph.

Which item is most popular at Fairview?

Which item is most popular at Pleasanton? _____

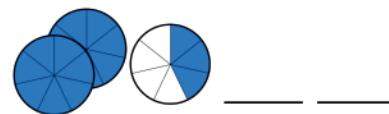
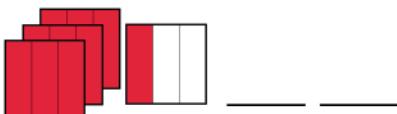
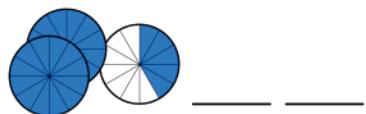
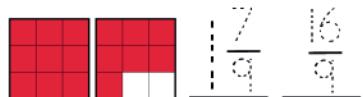

How many croissants were sold by each store? _____

How many croissants were sold by both stores? _____

Which store sold the most items altogether? _____

How could this information help a business owner? _____

Comparing Sales





Draw a circle. Shade all but $\frac{1}{6}$ of it.
What percent of the circle is shaded?

Jung Chang wrote a book in 1991 about her experiences during the Chinese Cultural Revolution in 1966. How many years after her experience did she write her story?

Draw and shade circles to show the mixed number $2 \frac{3}{4}$ as an improper fraction.

What time is 25 hours after midnight?

Name these fractions as mixed numbers and improper fractions. (5.30)

Find the mean, median, mode and range of each set of game scores.

Scores

Re-order

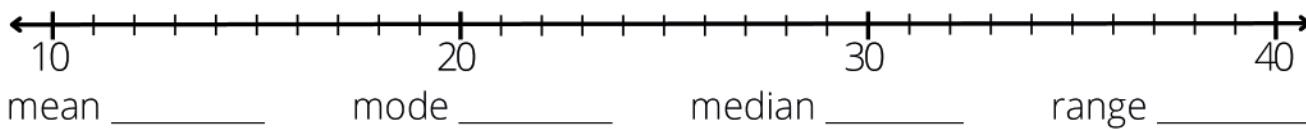
Mean

Median

Mode

Range

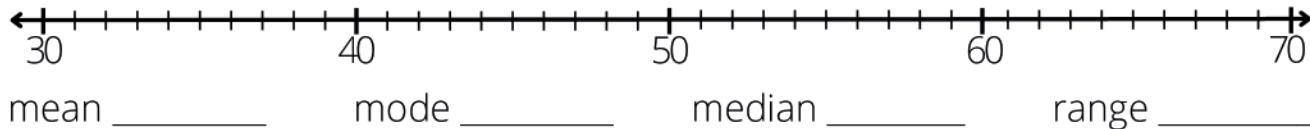
6, 11, 8, 7, 3	3, 6, 7, 8, 11	7	6		8
7, 7, 9, 4, 3					
7, 8, 10, 5, 10					
11, 5, 2, 9, 4, 10, 8					
14, 5, 8, 8, 10, 7, 11					


#72 Date _____

Create box plots then find the mean, mode, median and range for each data set.

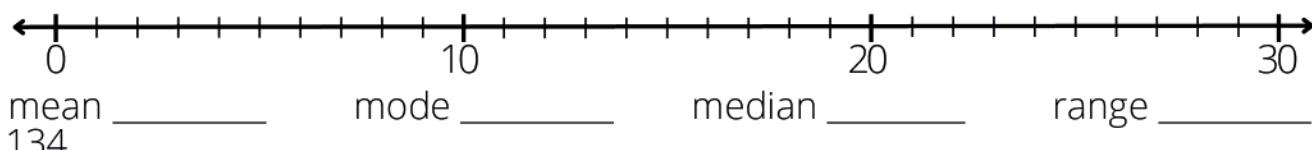
1) 17, 31, 20, 21, 19, 17, 25, 23, 30, 18, 22

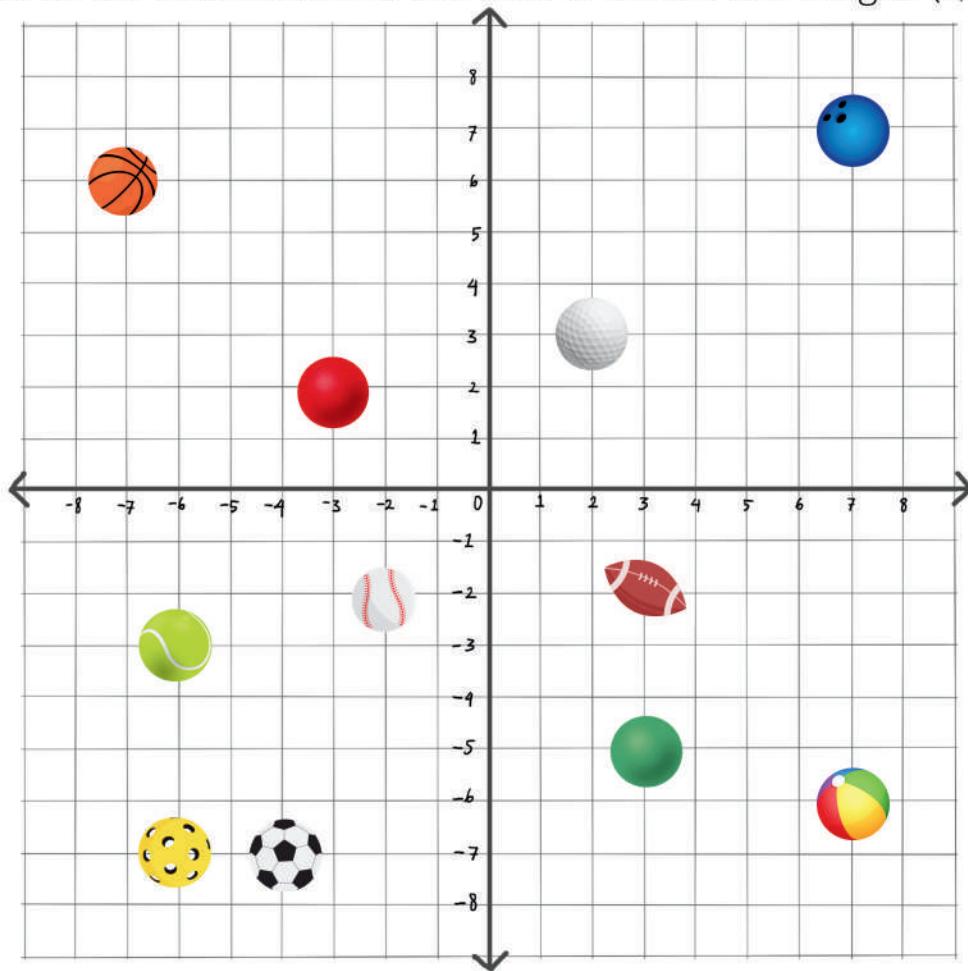
Re-order: 17, 17, 18, 19, 20, 21, 22, 23, 25, 30, 31


Maximum _____ Minimum _____ Median _____ Q1 _____ Q3 _____

2) 68, 31, 63, 55, 39, 47, 45, 53, 60, 38, 32, 59, 58

Re-order:

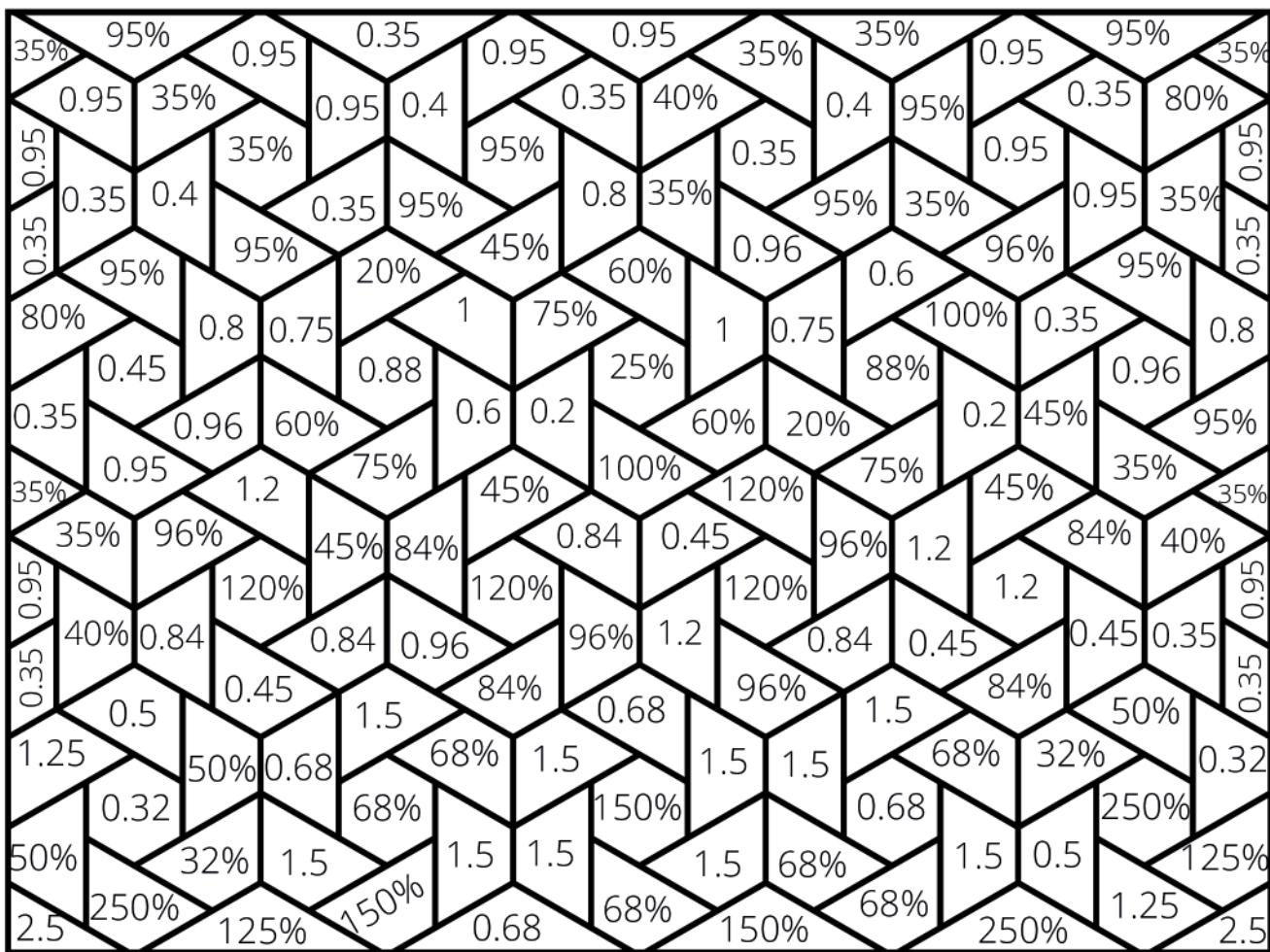

Maximum _____ Minimum _____ Median _____ Q1 _____ Q3 _____


3) 9, 28, 20, 27, 19, 7, 21, 27, 6, 18

Re-order:

Maximum _____ Minimum _____ Median _____ Q1 _____ Q3 _____

Write the coordinates of each ball in the list to the right. (x, y)


(-7, 6)	(,)
(,)	(,)
(,)	(,)
(,)	(,)
(,)	(,)

How many balls are in quadrant IV?

Which quadrant has the most balls?

Start the maze with zero. Add the number in each successive space. You must finish with a total of ten. There are three possible routes.

START	1.6	2.3	0.9	1.2
0.6	0.8	1.7	2.1	0.7
1.4	1.9	1.6	0.3	2.2
1.8	1.7	1.5	2.4	0.4
0.8	1.6	2.6	0.9	END

Fraction Decimal Percent

 $22/25 = 0.88 = 88\%$

 $21/25 =$

 $3/4 =$

 $3/5 =$

 $9/20 =$

 $19/20 =$

 $2/5 =$

 $1/2 =$

 $17/25 =$

 $8/25 =$

Fraction Decimal Percent

 $1/4 =$

 $12/10 =$

 $4/4 =$

 $1/5 =$

 $24/25 =$

 $7/20 =$

 $4/5 =$

 $5/2 =$

 $3/2 =$

 $5/4 =$

Find each product or quotient horizontally, vertically or diagonally.

$$9.12 \times 10 = 91.2$$

$$612/180 = 3.4$$

$$12.3 \times 18 = 221.4$$

$$8.1 \times 6 = 48.6$$

$$2142/28 = 76.5$$

$$26.3 \times 33.2 = 872.36$$

$$284.52/12 = 23.71$$

$$247/49.4 = 5$$

$$13.4 \times 7 = 93.8$$

$$2008.6/5.5 = 365.2$$

$$33.3 \times 3 = 100$$

$$25.4/5 = 5.08$$

$$143.5 \times 6 = 861$$

$$81.9/13 = 6.23$$

7 1 5 2 1 6 4 8 3 9 2

2 9 0 2 8 4 8 . 6 . 3

4 0 9 1 . 2 . 3 5 7 .

3 2 4 . 3 9 5 6 . 8 7

6 8 3 4 9 0 4 7 2 0 1

8 3 8 7 3 . 1 6 6 2 9

0 . 2 6 7 3 5 . 0 8 9

9 4 1 3 1 8 0 5 2 6 7

Find the value of each piece of fruit, then solve each problem.

$$\text{Watermelon} + \text{Blueberry} = 7$$

$$2 \times (\text{Watermelon} + \text{Blueberry}) = 21$$

$$\text{Orange} \times \text{Blueberry} = 27$$

$$\sqrt{\text{Watermelon} \times \text{Orange} + \text{Orange}} = \underline{\hspace{2cm}}$$

$$\text{Banana} + \text{Kiwi} \div \text{Blueberry} = \underline{\hspace{2cm}}$$

$$\text{Blueberry} + \text{Kiwi} \times \text{Strawberry} = \underline{\hspace{2cm}}$$

$$\text{Banana} \div \text{Kiwi} - \text{Watermelon} = \underline{\hspace{2cm}}$$

$$5(\text{Banana} \div \text{Blueberry}) = \underline{\hspace{2cm}}$$

$$\text{Orange} - \text{Strawberry} = 1$$

$$\text{Kiwi}^2 = 36$$

$$\text{Strawberry} \times \text{Kiwi} \div \text{Banana} = 4$$

$$\sqrt{\text{Watermelon}} - \text{Strawberry} = \underline{\hspace{2cm}}$$

$$\text{Orange} \times \text{Banana} = \underline{\hspace{2cm}}$$

$$\text{Blueberry}^3 = \underline{\hspace{2cm}}$$

$$\text{Watermelon} \times \text{Kiwi} - \text{Blueberry} \times \text{Strawberry} = \underline{\hspace{2cm}}$$

$$\text{Watermelon} + \text{Kiwi} \times \text{Blueberry} - \text{Strawberry} = \underline{\hspace{2cm}}$$

$$\text{Strawberry} = \boxed{\hspace{1cm}}$$

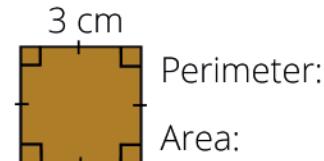
$$\text{Orange} = \boxed{\hspace{1cm}}$$

$$\text{Kiwi} = \boxed{\hspace{1cm}}$$

$$\text{Watermelon} = \boxed{\hspace{1cm}}$$

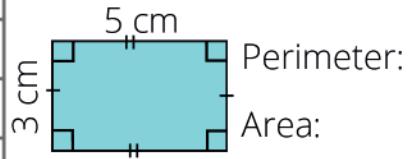
$$\text{Banana} = \boxed{\hspace{1cm}}$$

$$\text{Blueberry} = \boxed{\hspace{1cm}}$$


Each group contains two truths and one lie. Circle the lie in each box.

1) $6 \times 3 = 36/2$ 2) $12/2 = 2^2$ 3) $2^2 = 36/9$	1) $1/2 > 1/4$ 2) $2 = 6/3$ 3) $3/4 < 1/2$	1) $5.8 \text{ m} = 580 \text{ cm}$ 2) $58 \text{ cm} = 580 \text{ mm}$ 3) $58 \text{ km} = 58 \text{ m}$
1) $12 \text{ km} = 120 \text{ cm}$ 2) $12 \text{ cm} = 120 \text{ mm}$ 3) $1.2 \text{ m} = 120 \text{ cm}$	1) $5 \times 12 = 6 \times 10$ 2) $8 \times 3 \div 4 = 4 + 2$ 3) $8^2 = 8 + 8$	1) $8/16 > 6/18$ 2) $5/15 > 9/16$ 3) $13/15 < 3/5$
1) $1 \frac{3}{4} = 11/4$ 2) $2/4 = 5/10$ 3) $9/8 = 1 \frac{1}{8}$	1) $24 = 2^3 \times 3$ 2) $28 = 2^2 \times 7$ 3) $32 = 2^4$	1) $56/7 = 2 \times 4$ 2) $5 \times 3 = 6 + 7$ 3) $3(2 + 4) = 9 \times 2$

MYSTERY PICTURE


What has a neck but no head?

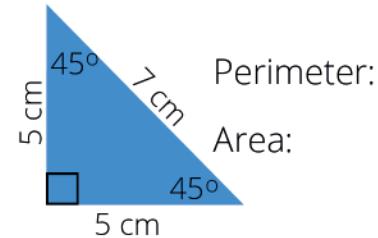
10	5	31.4	5	10	12	9	12	5	78.5	10	31.4	5
5	31.4	5	10	78.5	9	12	9	31.4	5	78.5	10	10
10	78.5	10	31.4	5	12	9	12	10	31.4	5	5	10
5	31.4	5	10	78.5	16	15	16	5	78.5	10	31.4	5
78.5	5	31.4	5	10	15	16	15	78.5	10	31.4	5	78.5
5	31.4	5	10	78.5	16	15	16	5	78.5	10	31.4	5
10	78.5	10	31.4	16	15	16	15	16	31.4	5	5	10
31.4	5	10	15	16	15	16	15	16	15	31.4	10	78.5
5	31.4	15	16	15	16	15	16	15	16	15	31.4	5
10	78.5	17	13.5	17	13.5	17	13.5	17	13.5	17	10	5
31.4	5	13.5	17	13.5	17	13.5	17	13.5	17	13.5	5	78.5
10	78.5	10	13.5	17	13.5	17	13.5	17	13.5	5	5	10
31.4	5	10	78.5	17	13.5	17	13.5	17	5	31.4	10	78.5

Perimeter:

Area:

Perimeter:

Area:

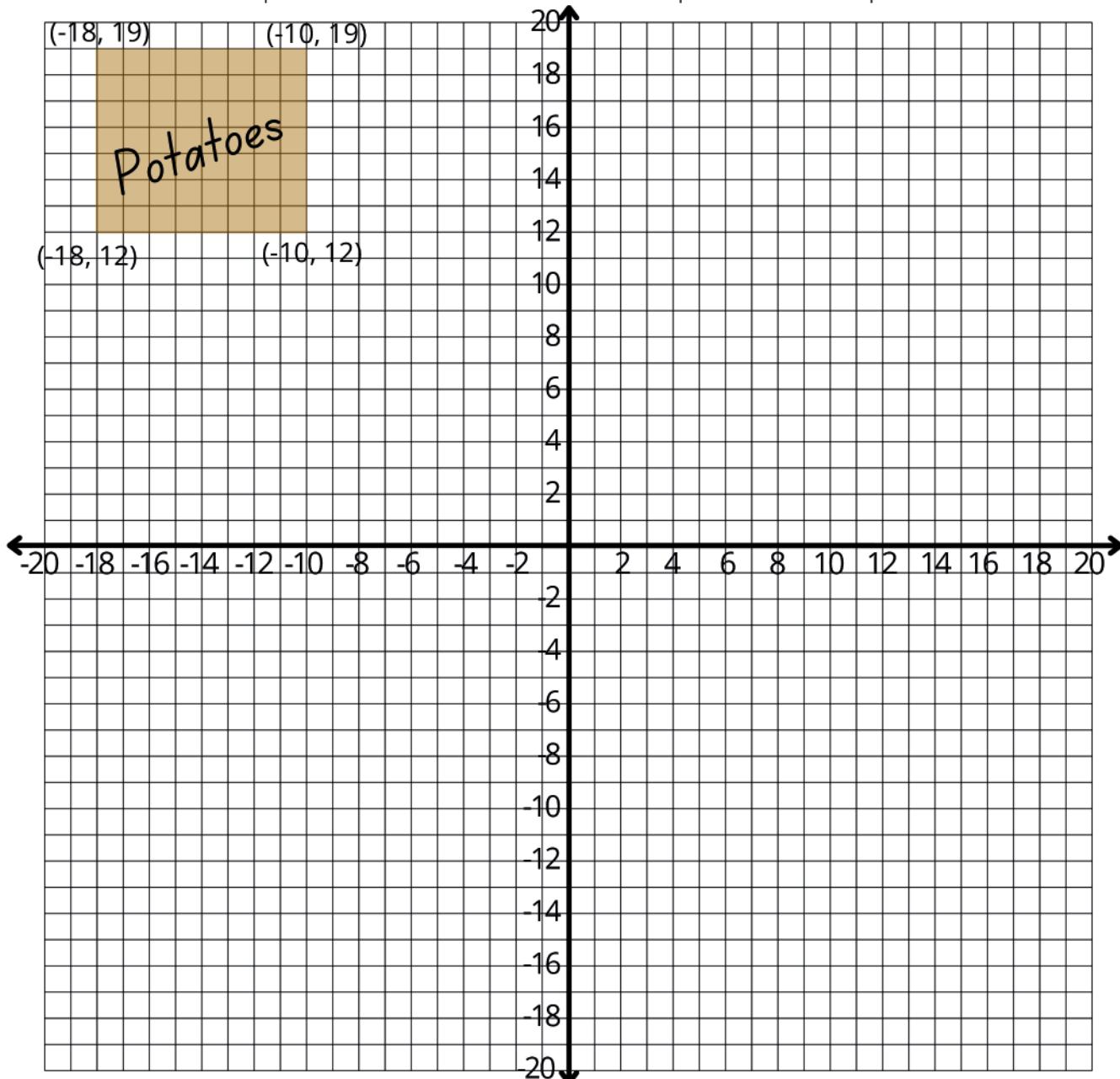


Radius:

Diameter:

Perimeter:

Area:

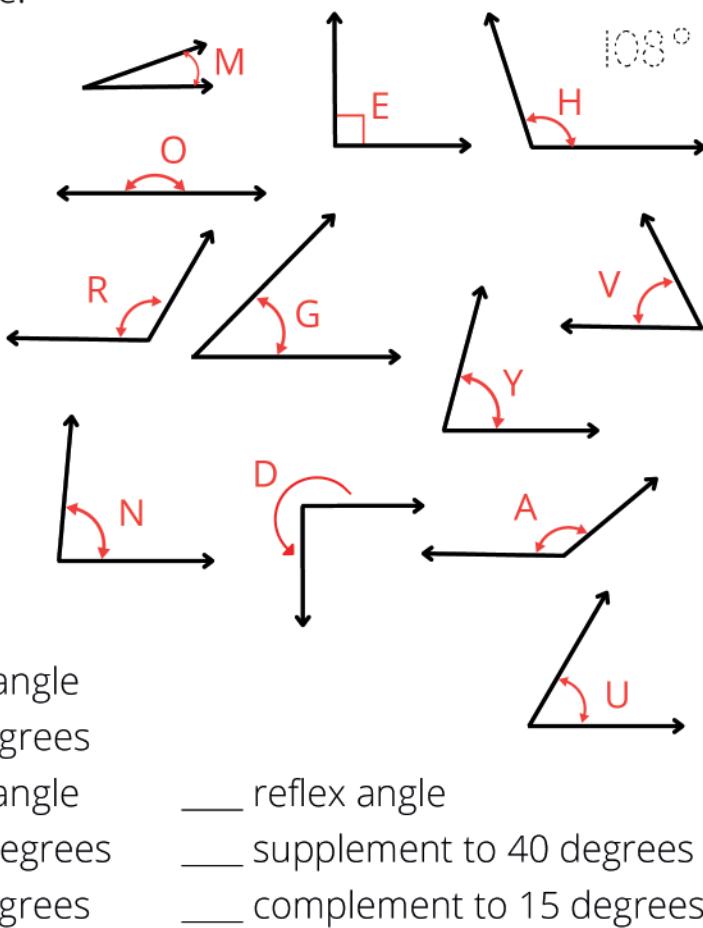

Perimeter:

Area:

Use this grid paper to plan your garden. Draw a rectangular space for each crop, the area specified, then label each corner with an ordered pair (x, y) .

Potatoes 56 sq. units
 Carrots 18 sq. units
 Beets 36 sq. units
 Lettuce 24 sq. units
 Beans 60 sq. units

Flowers 72 sq. units
 Tomatoes 48 sq. units
 Squash 36 sq. units
 Onions 15 sq. units
 Spinach 30 sq. units



Divide the plot for flowers in half diagonally. Plant one triangle with daisies and one triangle with mums. How much area is each?

Divide the plot for squash in half diagonally. Plant one triangle with pumpkins and the other with zucchini. How much area is each?

Use your protractor to find the measure of each angle and label it. Use the clues below to get some really great advice.

- supplement to 72 degrees
- complement to 30 degrees
- complement to 45 degrees
- complement to 15 degrees
- a straight angle
- complement to 30 degrees
- supplement to 60 degrees
- complement to 70 degrees
- a straight angle
- supplement to 160 degrees
- supplement to 40 degrees
- 80 degrees
- right angle
- 65 degrees
- 270 degrees
- right angle
- reflex angle
- 120 degrees
- 140 degrees
- supplement to 40 degrees
- reflex angle
- 75 degrees
- complement to 15 degrees

Fill in each blank with one of these multipliers or divisors to make each equation true.

$$\begin{array}{lcl}
 312 \underline{\hspace{2cm}} = 0.312 & & 541 \underline{\hspace{2cm}} = 54.1 \\
 2.4 \underline{\hspace{2cm}} = 240 & & 17 \underline{\hspace{2cm}} = 0.17 \\
 0.67 \underline{\hspace{2cm}} = 670 & & 3.5 \underline{\hspace{2cm}} = 3500 \\
 83 \underline{\hspace{2cm}} = 8.3 & & 12 \underline{\hspace{2cm}} = 0.012 \\
 11.4 \underline{\hspace{2cm}} = 114 & & 75 \underline{\hspace{2cm}} = 0.75 \\
 2.91 \underline{\hspace{2cm}} = 291 & & 75 \underline{\hspace{2cm}} = 750 \\
 15 \underline{\hspace{2cm}} = 15000 & & 75 \underline{\hspace{2cm}} = 7.5 \\
 0.15 \underline{\hspace{2cm}} = 150 & & 75 \underline{\hspace{2cm}} = 7500 \\
 940 \underline{\hspace{2cm}} = 94 & & 99 \underline{\hspace{2cm}} = 0.99 \\
 708 \underline{\hspace{2cm}} = 7.08 & & 99 \underline{\hspace{2cm}} = 9.9 \\
 140 & &
 \end{array}$$

$$\begin{array}{lcl}
 541 \underline{\hspace{2cm}} = 54.1 & & \times 10 \\
 17 \underline{\hspace{2cm}} = 0.17 & & \div 100 \\
 3.5 \underline{\hspace{2cm}} = 3500 & & \times 1000 \\
 12 \underline{\hspace{2cm}} = 0.012 & & \div 1000 \\
 75 \underline{\hspace{2cm}} = 0.75 & & \div 100 \\
 75 \underline{\hspace{2cm}} = 750 & & \div 10000 \\
 75 \underline{\hspace{2cm}} = 7.5 & & \times 100 \\
 75 \underline{\hspace{2cm}} = 7500 & & \div 1000 \\
 99 \underline{\hspace{2cm}} = 0.99 & & \div 100 \\
 99 \underline{\hspace{2cm}} = 9.9 & & \times 10
 \end{array}$$

x 10
 x100
 x1000
 ÷ 10
 ÷100
 ÷1000