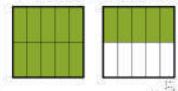


#1 Date _____

Three thousand four hundred eighty-five (3.1) — check Level 3 Lesson 1 if you need a review
 $3000 + 400 + 80 + 5$

All about the number 3,485:

- How many ones are in this number? 5
- How many hundreds are in this number? 4
- How many thousands are in this number? 3
- How many tens are in this number? 8
- Which number is in the hundreds place? 4
- Which number is in the thousands place? 3
- Which number is in the ones place? 5


Trace the existing numbers, fill in the missing numbers and color the squares with EVEN numbers yellow. (2.4)

489	490	491	492	493	494	495	496	497	498
499	500	501	502	503	504	505	506	507	508
509	510	511	512	513	514	515	516	517	518

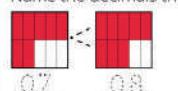
Complete each number sequence:

- 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36
 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6
 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6
 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 14, 7
 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84

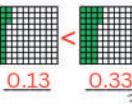
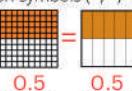
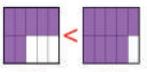
Write each fraction as a:

mixed number: 1 5/10
 decimal: 1.5
 word form: one and five tenths

mixed number: 2 3/10
 decimal: 2.3
 word form: two and three tenths


What is the sum of two hundred thirty-five and seven hundred sixty-five?
1000

Your piano recital had 10 rows, each with 14 seats. How many seats were there?
140 seats




You need to finish the remaining 175 pages of your library book before it's due in 7 days. How many pages should you read each day?
25 pages

Uh, oh. You and three buddies broke the neighbor's window with a baseball. It will cost \$624 to replace. How much should each of you pay?
\$156

Name the decimals then compare them using the comparison symbols (<, >, =)

Why are these values equal?

#2 Date _____

Identify each shaded part using a fraction, a decimal and words.

<u>0.5</u>	<u>0.6</u>	<u>0.4</u>	<u>0.1</u>	<u>0.9</u>

<u>0.19</u>	<u>0.08</u>	<u>0.43</u>	<u>0.75</u>	<u>0.03</u>

<u>0.005</u>	<u>0.5</u>	<u>0.03</u>	<u>0.003</u>	<u>0.029</u>

Name each number out loud, then use your place value chart to help you write the value of the 2 in each number:

51324	5132.4	513.24	51.324	21354
<u>2</u> 0	<u>2</u>	<u>2</u> 0	<u>2</u> 00	<u>2</u> 0000
92873	9287.3	928.73	92.873	93.872
<u>2</u> 000	<u>2</u> 00	<u>2</u> 0	<u>2</u>	<u>2</u> 000

#3 Date _____

What numbers do these base ten blocks represent? Write each in expanded form and word form.

(4x1000)+(2x10)+(4x1) (2x1000)+(3x100)+(1x10)+(6x1)

four hundred twenty-four two thousand, three hundred and sixteen

(1x1000)+(3x100)+(1x1) (4x1000)+(6x100)+(3x10)+(5x1)

one thousand, three hundred and one four thousand, six hundred and thirty five

Use your place value chart to fill in the blanks in this table.

Word Form	Expanded Form	Standard Form
Twelve thousand, six hundred two	<u>(1x10,000)+(6x1000)+(2x1)</u>	12,602
Nine million, thirteen thousand	<u>(9x100,000,000)+(1x10000)+(3x1000)</u>	9,013,000
Ten thousand, fifteen	<u>(1x10000)+(1x10)+(5x1)</u>	10,015
Fifty-nine thousand	<u>(5x10,000)+(9x1000)</u>	59,000
Forty-three million, fifty thousand, nineteen	<u>(4x10000000)+(5x10000)+(1x10)+(9x1)</u>	43,050,019

A chocolate factory makes the following amounts of each flavor, based on popularity. Use the tables below to answer the questions. (3.24)

Which flavor is the most popular? Hazelnut

Which flavor is the least popular? Vanilla

Which flavor is twice as popular as vanilla? Mint

How many chocolates does the factory make altogether? 544,094

How many more hazelnut chocolates than raspberry chocolates does the factory make? 51,418

Put these numbers in order from smallest to largest. (3.2)

475	547	745	457	457	475	547	745	
				smallest	largest			

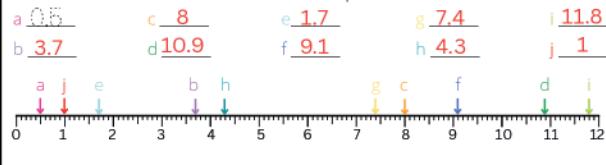
980	890	809	908	809	890	908	980	
				smallest	largest			

132	123	312	213	231	123	132	213	231	312	
					smallest	largest				

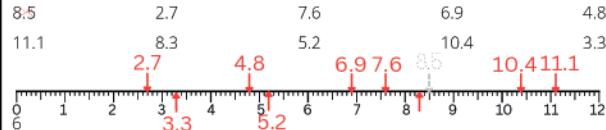
561	165	156	615	165	156	561	615	
				smallest	largest			

Write operators ($\times, \div, +, -$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (3.83)

$6 \div 2 \times 3 = 1$	$5 \times 2 - 6 = 4$	$7 \times 1 - 1 = 6$
$- + \times \times$	$- \times \div -$	$- + + \times$
$5 + 2 - 4 = 3$	$4 + 1 - 2 = 3$	$3 \times 1 \times 1 = 3$
$+ \times \div \times$	$\times + \times \times$	$\times + + \div$
$1 + 1 + 2 = 4$	$0 + 2 - 1 = 1$	$2 + 1 - 1 = 2$
$= = = =$	$= = = =$	$= = = =$
$2 + 4 + 6 = 12$	$5 - 1 - 3 = 1$	$1 \times 3 \times 3 = 9$


Write each letter at the given point on the number line:

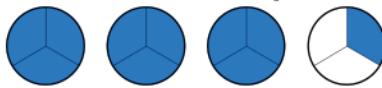
M at 2	E at 11	U at -11	R at 12	D at 9
O at 10	E at -9	O at -3	U at -11	S at -12
C at -5	T at 4	E at -9	O at -3	L at -2
A at 3	O at -4	T at 4	H at 5	
P at -10	R at 12	O at -4	R at -8	


Use words to write $3\frac{7}{10}$ Three and seven tenths

Use words to write 3.7 Three and seven tenths

To which decimal number does each arrow point?

Draw arrows to each decimal number and label them with the number.



Draw circles to group the items, then complete the equations. (4.16)

divide 20 into 2 equal groups, how many are in each group?	$\frac{20}{2} = 10$	$20 + 2 = 10$	$2 \times 10 = 20$	What is $1/2$ of 20? <u>10</u>
	$\frac{20}{4} = 5$	$20 \div 4 = 5$	$4 \times 5 = 20$	What is $1/4$ of 20? <u>5</u>
	$\frac{20}{5} = 4$	$20 \div 5 = 4$	$5 \times 4 = 20$	What is $1/5$ of 20? <u>4</u>

What is twice the quantity of six and three? $2(6+3)=18$
What is one fifth of thirty? 6

Shade circles to show that $3\frac{1}{3}$ equals $\frac{10}{3}$.

Identify each shaded part using a fraction, a decimal and words. (4.34)

$\frac{1}{10}$ seven tenths	$\frac{4}{10}$ four hundredths	$\frac{1}{100}$ one hundredth	$\frac{13}{100}$ thirteen hundredths	$\frac{25}{100}$ twenty-five hundredths
0.7	0.4	0.1	0.13	0.25
$\frac{3}{100}$ three hundredths	$\frac{91}{100}$ ninety-one hundredths	$\frac{700}{1000}$ seven hundred thousandths	$\frac{900}{1000}$ nine hundred thousandths	$\frac{400}{1000}$ four hundred thousandths
0.3	0.91	0.700	0.9	0.4

#5 Date _____

Rounding Steps:

1. Circle the digit in the place to which you are rounding.
2. If the next digit to the right is 4 or less let your circled digit rest.
3. If it's 5 or more, let your circled digit soar one number higher.
4. Make all digits to the right of the circled digit zeros.

Four or less? Let it rest.

Five or more? Let it soar.

Round to the nearest TEN:

05 <u>40</u>	04 <u>20</u>	19 <u>20</u>	13 <u>10</u>
Five or less? Let the 2 rest.	Four or less? Let the 2 rest.	19 or 20?	13 or 10?

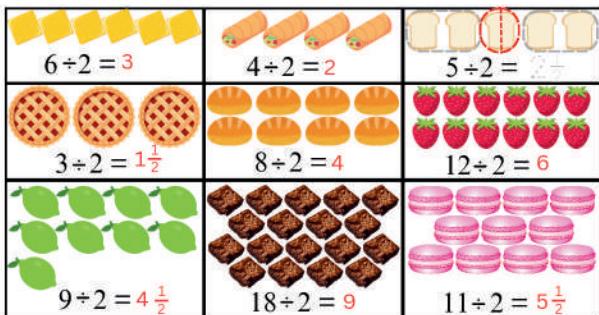
Round to the nearest HUNDRED:

0245 <u>200</u>	0119 <u>100</u>	275 <u>300</u>	349 <u>300</u>
Five or less? Let the 2 rest.	Four or less? Let the 2 rest.	275 or 300?	349 or 300?
0254 <u>300</u>	189 <u>200</u>	395 <u>400</u>	208 <u>200</u>
Five or less? Let the 2 rest.	Five or less? Let the 2 rest.	395 or 400?	208 or 200?

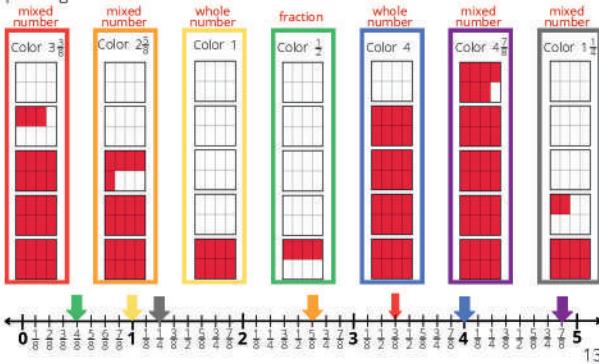
Round to the nearest THOUSAND:

01499 <u>1000</u>	1586 <u>2000</u>	0146 <u>0</u>	1433 <u>1000</u>
Five or less? Let the 1 rest.	1586 or 2000?	0146 or 0?	1433 or 1000?
03050 <u>3000</u>	2059 <u>2000</u>	0817 <u>1000</u>	1649 <u>2000</u>
Five or less? Let the 3 rest.	2059 or 2000?	0817 or 1000?	1649 or 2000?

Round to the nearest TEN:


1500 <u>1500</u>	1500 <u>1500</u>	950 <u>950</u>
Round to the nearest TEN	Round to the nearest TEN	Round to the nearest TEN

1501 <u>1500</u>	947 <u>950</u>
Round to the nearest TEN	Round to the nearest TEN


3217 <u>3200</u>	2103 <u>2100</u>
Round to the nearest TEN	Round to the nearest TEN

Draw lines to divide each set into equal halves. If there is a leftover, circle it in red, then use a vertical line to cut it in half.

Color the number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below.

Find the sums and differences. Line up the decimals!

$$142.30 \\ - 98.57 \\ \hline$$

$$37.94 + 12.37$$

$$50.31$$

$$72 - 29.01$$

$$42.99$$

Find the sums. (2.10)

$2 + 2 = 4$	$2 + 3 = 5$	$2 + 4 = 6$	$3 + 2 = 5$	$3 + 4 = 7$
$20 + 20 = 40$	$20 + 30 = 50$	$20 + 40 = 60$	$30 + 20 = 50$	$30 + 40 = 70$
$200 + 200 = 400$	$200 + 300 = 500$	$200 + 400 = 600$	$300 + 200 = 500$	$300 + 400 = 700$

Find the sums. (2.10)

$$\begin{array}{lll}
 4 + 5 = 9 & 6 + 3 = 9 & 5 + 6 = 11 \\
 40 + 50 = 90 & 60 + 30 = 90 & 50 + 60 = 110 \\
 400 + 500 = 900 & 600 + 300 = 900 & 500 + 600 = 1100 \\
 4000 + 5000 = 9000 & 6000 + 3000 = 9000 & 5000 + 6000 = 11000
 \end{array}$$

Trace the existing numbers, fill in the missing numbers and color the squares with EVEN numbers yellow. (2.4)

987	988	989	990	991	992	993	994	995	996
997	998	999	1000	1001	1002	1003	1004	1005	1006
1007	1008	1009	1010	1011	1012	1013	1014	1015	1016

#8 Date _____

Find the sums and differences without regrouping.

$$\begin{array}{r} 42 \\ + 16 \\ \hline 58 \end{array}
 \begin{array}{r} 35 \\ + 24 \\ \hline 59 \end{array>
 \begin{array}{r} 21 \\ + 37 \\ \hline 58 \end{array>
 \begin{array}{r} 15 \\ + 44 \\ \hline 59 \end{array>
 \begin{array}{r} 33 \\ + 12 \\ \hline 45 \end{array}$$

$$\begin{array}{r} 26 \\ - 14 \\ \hline 12 \end{array>
 \begin{array}{r} 38 \\ - 23 \\ \hline 15 \end{array>
 \begin{array}{r} 41 \\ - 20 \\ \hline 21 \end{array>
 \begin{array}{r} 19 \\ - 16 \\ \hline 3 \end{array>
 \begin{array}{r} 57 \\ - 24 \\ \hline 33 \end{array}$$

Find the sums and differences with regrouping.

$$\begin{array}{r} 247 \\ + 163 \\ \hline 410 \end{array>
 \begin{array}{r} 185 \\ + 245 \\ \hline 430 \end{array>
 \begin{array}{r} 215 \\ + 95 \\ \hline 310 \end{array>
 \begin{array}{r} 1448 \\ + 585 \\ \hline 2033 \end{array>
 \begin{array}{r} 1629 \\ + 2586 \\ \hline 4215 \end{array}$$

Find the missing PART and/or WHOLE in each addition fact family.

$$\begin{array}{r} 9 \\ 2 \\ \hline 7 \end{array>
 \begin{array}{r} 8 \\ 4 \\ \hline 12 \end{array>
 \begin{array}{r} 2 \\ 4 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 9 \\ 3 \\ \hline 6 \end{array>
 \begin{array}{r} 1 \\ 7 \\ \hline 8 \end{array>
 \begin{array}{r} 3 \\ 3 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 8 \\ 6 \\ \hline 2 \end{array>
 \begin{array}{r} 9 \\ 5 \\ \hline 14 \end{array>
 \begin{array}{r} 7 \\ 4 \\ \hline 11 \end{array}$$

$$\begin{array}{r} 8 \\ 3 \\ \hline 5 \end{array>
 \begin{array}{r} 9 \\ 5 \\ \hline 14 \end{array>
 \begin{array}{r} 7 \\ 5 \\ \hline 12 \end{array}$$

#9 Date _____

Find the missing numbers to complete each equation.

$$\begin{array}{r} 314 \\ + 81 \\ \hline 395 \end{array>
 \begin{array}{r} 123 \\ + 112 \\ \hline 235 \end{array>
 \begin{array}{r} 175 \\ + 168 \\ \hline 343 \end{array>
 \begin{array}{r} 130 \\ + 218 \\ \hline 348 \end{array>
 \begin{array}{r} 301 \\ + 118 \\ \hline 419 \end{array}$$

$$\begin{array}{r} 65 \\ - 37 \\ \hline 28 \end{array}
 \begin{array}{r} 131 \\ - 29 \\ \hline 102 \end{array}
 \begin{array}{r} 140 \\ - 25 \\ \hline 115 \end{array>
 \begin{array}{r} 159 \\ - 32 \\ \hline 127 \end{array>
 \begin{array}{r} 224 \\ - 146 \\ \hline 78 \end{array}$$

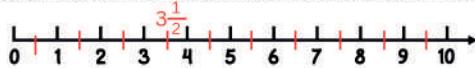
Rearrange the subtraction problems above if you need to.

$$\begin{array}{r} 65 \\ - 37 \\ \hline 28 \end{array>
 \begin{array}{r} 102 \\ - 29 \\ \hline 73 \end{array>
 \begin{array}{r} 140 \\ - 25 \\ \hline 115 \end{array>
 \begin{array}{r} 159 \\ - 32 \\ \hline 127 \end{array>
 \begin{array}{r} 224 \\ - 146 \\ \hline 78 \end{array}$$

Find the value of X in each equation and write it in the box below.

$$\begin{array}{r} 114 \\ + X \\ \hline 228 \end{array>
 \begin{array}{r} X \\ + 83 \\ \hline 189 \end{array>
 \begin{array}{r} 106 \\ + X \\ \hline 158 \end{array>
 \begin{array}{r} 125 \\ + X \\ \hline 236 \end{array>
 \begin{array}{r} 571 \\ + X \\ \hline 300 \end{array}$$

$$\begin{array}{r} X = 114 \\ X = 106 \\ X = 52 \\ X = 111 \\ X = -271 \end{array}$$


$$\begin{array}{r} 93 \\ - X \\ \hline 16 \end{array>
 \begin{array}{r} X \\ - 29 \\ \hline 93 \end{array>
 \begin{array}{r} 163 \\ - X \\ \hline 85 \end{array>
 \begin{array}{r} 144 \\ - X \\ \hline 151 \end{array>
 \begin{array}{r} 228 \\ - X \\ \hline 99 \end{array}$$

$$\begin{array}{r} X = 77 \\ X = 122 \\ X = 78 \\ X = 295 \\ X = 129 \end{array}$$

Rearrange the subtraction problems above if you need to.

$$\begin{array}{r} 93 \\ - 77 \\ \hline 16 \end{array>
 \begin{array}{r} 93 \\ - 29 \\ \hline 64 \end{array>
 \begin{array}{r} 163 \\ - 85 \\ \hline 78 \end{array>
 \begin{array}{r} 144 \\ - 151 \\ \hline 7 \end{array>
 \begin{array}{r} 228 \\ - 99 \\ \hline 129 \end{array}$$

Draw a number line with whole numbers marked and numbered from 0 to 10. Then mark $\frac{1}{2}$ in between each whole number. Draw an arrow to $3\frac{1}{2}$.

Write these sentences using digits and operator symbols:

Forty-five is less than fifty-four $45 < 54$

Twelve more than fifteen is twenty-seven $12+15=27$

Seventeen, twice, is thirty-four $17\times 2=34$

Ten, four times, is forty $10\times 4=40$

Forty minus fourteen equals twenty-six $40-14=26$

Two hundred twenty-one is greater than two hundred twelve $221>212$

Trace then write each term, then draw a line to match each term to its definition. (3.59)

~~coefficient~~

• A letter or symbol that represents a number.

~~variable~~

• A number in front of a variable. It gets multiplied by the variable.

$$\text{coefficient } \text{variable}^A = 4$$

Math Rule:
When you have a VARIABLE and a COEFFICIENT together in a number sentence, they are multiplied together. You don't need a multiplication symbol.

Fill in the missing factors or products to complete each number sentence.

Find the value of the VARIABLE in each number sentence.

See! Multiplication symbol between the variable and the coefficient.

$$5 \times \boxed{3} = 15$$

$$5 \times \boxed{3} = 15 \quad X = \underline{3}$$

$$3 \times \boxed{2} = 6$$

$$3 \times \boxed{2} = 6 \quad Y = \underline{2}$$

$$4 \times \boxed{4} = 16$$

$$4 \times \boxed{4} = 16 \quad Z = \underline{4}$$

$$7 \times \boxed{3} = 21$$

$$7 \times \boxed{3} = 21 \quad A = \underline{3}$$

$$6 \times \boxed{6} = 36$$

$$6 \times \boxed{6} = 36 \quad B = \underline{6}$$

Rewrite each repeated addition sentence as a multiplication equation.

$$7 + 7 + 7 = 7 \times 3 = 21$$

$$8 + 8 + 8 + 8 + 8 + 8 = 8 \times 7 = 56$$

$$9 + 9 + 9 + 9 = 9 \times 4 = 36$$

Your mom has seven hundred five dollars and seventy-nine cents. She buys a laptop for three hundred forty-five dollars and ninety-nine cents. How much money does she have left?

$$\begin{array}{r} 705.79 \\ -345.99 \\ \hline 359.80 \end{array}$$

Find the products.

$$\begin{array}{r} 28 \\ \times 6 \\ \hline 168 \end{array} \quad \begin{array}{r} 32 \\ \times 8 \\ \hline 256 \end{array} \quad \begin{array}{r} 19 \\ \times 3 \\ \hline 57 \end{array} \quad \begin{array}{r} 22 \\ \times 9 \\ \hline 198 \end{array} \quad \begin{array}{r} 35 \\ \times 4 \\ \hline 140 \end{array} \quad \begin{array}{r} 42 \\ \times 5 \\ \hline 210 \end{array}$$

$$\begin{array}{r} 25 \\ \times 12 \\ \hline \begin{array}{r} 50 \\ + 250 \\ \hline 300 \end{array} \end{array} \quad \begin{array}{r} 45 \\ \times 13 \\ \hline \begin{array}{r} 135 \\ + 300 \\ \hline 525 \end{array} \end{array} \quad \begin{array}{r} 27 \\ \times 21 \\ \hline \begin{array}{r} 27 \\ + 54 \\ \hline 567 \end{array} \end{array} \quad \begin{array}{r} 33 \\ \times 15 \\ \hline \begin{array}{r} 165 \\ + 330 \\ \hline 495 \end{array} \end{array} \quad \begin{array}{r} 28 \\ \times 14 \\ \hline \begin{array}{r} 112 \\ + 280 \\ \hline 392 \end{array} \end{array} \quad \begin{array}{r} 22 \\ \times 18 \\ \hline \begin{array}{r} 180 \\ + 200 \\ \hline 360 \end{array} \end{array}$$

Draw circles to group the items, then complete the equations. (4.16)

$$\begin{array}{l} \text{30 paperclips} \quad \frac{30}{10} = 3 \quad 30 \div 10 = 3 \quad 10 \times 3 = 30 \quad \text{What is } 1/10 \text{ of } 30? \underline{3} \\ \text{30 buttons} \quad \frac{30}{5} = 6 \quad 30 \div 5 = 6 \quad 5 \times 6 = 30 \quad \text{What is } 1/5 \text{ of } 30? \underline{6} \\ \text{30 dots} \quad \frac{30}{2} = 15 \quad 30 \div 2 = 15 \quad 2 \times 15 = 30 \quad \text{What is } 1/2 \text{ of } 30? \underline{15} \end{array}$$

Shade to show that $3\frac{1}{6}$ equals $\frac{19}{6}$.

Shade to show that $3\frac{2}{3}$ equals $\frac{11}{3}$.

Change mixed numbers to improper fractions.

The denominator of the improper fraction is the same as the denominator of the fractional part of the mixed number, because the PIECES are the same size.

To find the numerator of the improper fraction:

1. Multiply the denominator of the fraction by the whole number.

2. Add the numerator of the fraction.

$$\begin{array}{r} 3\frac{1}{6} \\ \times 6 \\ \hline 18 + 1 = 19 \\ \hline 6 \\ \text{multiply} \end{array}$$

$$4\frac{1}{6} = \frac{25}{6}$$

$$1\frac{3}{4} = \frac{7}{4}$$

$$5\frac{1}{2} = \frac{11}{2}$$

$$2\frac{2}{3} = \frac{8}{3}$$

$$2\frac{7}{8} = \frac{23}{8}$$

$$4\frac{3}{5} = \frac{23}{5}$$

$$3\frac{1}{3} = \frac{10}{3}$$

$$3\frac{1}{4} = \frac{13}{4}$$

Find the value of the VARIABLE in each number sentence:

$$\begin{array}{rcl} 4X = 12 & X = \underline{3} & \text{coefficient variable} \\ 7Y = 56 & Y = \underline{8} & \text{Color the COEFFICIENTS red and the VARIABLES green in these number sentences.} \\ 8Z = 40 & Z = \underline{5} & \\ 6A = 36 & A = \underline{6} & \\ 9B = 72 & B = \underline{8} & \end{array}$$

#11 Date _____

Find the missing factors. (3.36)

$$\begin{array}{rcl} 7 \times 6 = 42 & 7 \times \boxed{9} = 63 & 8 \times 8 = 64 \\ 7 \times 4 = 28 & \boxed{12} \times 6 = 72 & 6 \times \boxed{9} = 54 \\ 8 \times 9 = 72 & 8 \times \boxed{5} = 40 & \boxed{7} \times 7 = 49 \end{array}$$

What fraction of the number sentences above have an ODD product? $\frac{2}{9}$
(There are nine number sentences, so that will be the denominator of both fractions.)

What fraction of the number sentences above have an EVEN product? $\frac{7}{9}$

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS). (3.83)

$\text{doughnut} = 4$	$\text{doughnut} = 5$	$\text{doughnut} = 6$	$\text{doughnut} = 7$
$\begin{array}{r} \text{doughnut} - \text{doughnut} = 2 \\ \text{doughnut} - \text{doughnut} = -2 \\ \text{doughnut} \times \text{doughnut} = 25 \\ \text{doughnut} + \text{doughnut} = 10 \end{array}$	$\begin{array}{r} \text{doughnut} + \text{doughnut} = 11 \\ \text{doughnut} \times \text{doughnut} = 25 \\ \text{doughnut}^2 = 25 \end{array}$	$\begin{array}{r} \text{doughnut} + \text{doughnut} \times \text{doughnut} = 33 \\ \text{doughnut} + \text{doughnut} \times \text{doughnut} = 7 \\ \text{doughnut} + \text{doughnut} - \text{doughnut} = -6 \end{array}$	$\begin{array}{r} \text{doughnut} \times \text{doughnut} = 7 \\ \text{doughnut} \times \text{doughnut} = 25 \\ \text{doughnut} + \text{doughnut} - \text{doughnut} = -6 \end{array}$

Complete these Multiplication Fact Family houses. (2.36)

8	72	9	6	48	8	96	12	56
$8 \times 9 = 72$	$6 \times 8 = 48$	$8 \times 12 = 96$	$96 \div 8 = 12$	$6 \times 8 = 48$	$12 \times 8 = 96$	$96 \div 12 = 8$	$8 \times 7 = 56$	$7 \times 8 = 56$
$9 \times 8 = 72$	$8 \times 6 = 48$	$12 \times 8 = 96$	$56 \div 8 = 7$	$72 \div 9 = 8$	$48 \div 6 = 8$	$96 \div 12 = 8$	$56 \div 7 = 8$	$56 \div 8 = 7$
$72 \div 9 = 8$	$48 \div 6 = 8$	$96 \div 12 = 8$	$56 \div 7 = 8$	$48 \div 8 = 6$	$12 \div 6 = 2$	$96 \div 8 = 12$	$56 \div 8 = 7$	$56 \div 8 = 7$

Find the value of the letter in each number sentence.

$5X = 20$	$X = 4$	$A - 7 = 14$	$A = 21$
$Y + 3 = 23$	$Y = 20$	$7B = 49$	$B = 7$
$15 - Z = 10$	$Z = 5$	$2^2 + C = 14$	$C = 10$

Find the products.

$52 \times 4 = 208$	$39 \times 6 = 234$	$87 \times 8 = 696$	$317 \times 3 = 951$	$598 \times 9 = 5382$	$454 \times 7 = 3178$
$36 \times 14 = 504$	$58 \times 25 = 1450$	$46 \times 31 = 1426$	$37 \times 23 = 851$	$28 \times 37 = 1036$	$57 \times 18 = 1026$
$119 \times 34 = 4046$	$277 \times 26 = 7202$	$318 \times 19 = 5540$	$480 \times 14 = 6720$	$194 \times 28 = 5432$	$249 \times 23 = 5727$

Use the number line to find each sum or difference. (3.58)

negative positive $\rightarrow +$

$1 - 2.5 = 1.5$ $-1 + 2.5 = 1.5$ $-2 + 3.2 = 1.2$
 $3 - 1.5 = 1.5$ $-1 - 1.3 = -2.3$ $1 + 1.8 = 2.8$
 $2.1 - 1.1 = 1$ $-1.1 + 2.1 = 1$ $1.3 + 1.7 = 3$
 $3.5 - 1.5 = 2$ $1 + 2.4 = 3.4$ $1.5 + 1.5 = 3$

#14 Date _____

Draw lines to divide each set into equal halves.

$4 \div 2 = 2$	$8 \div 2 = 4$	$6 \div 2 = 3$
----------------	----------------	----------------

Divide. Multiply. Subtract. Bring Down. Repeat.

$5 \overline{)65}$	$3 \overline{)87}$	$4 \overline{)84}$	$7 \overline{)91}$
No Remainder	No Remainder	No Remainder	No Remainder

Draw circles to group the items, then complete the equations. (4.16)

$\frac{18}{9} = 2$	$18 \div 9 = 2$	$9 \overline{)18}$
$\frac{18}{6} = 3$	$18 \div 6 = 3$	$6 \overline{)18}$
$\frac{18}{3} = 6$	$18 \div 3 = 6$	$3 \overline{)18}$

What is 1/9 of 18?
 What is 2/9 of 18?
 What is 1/6 of 18?
 What is 5/6 of 18?
 What is 1/3 of 18?
 What is 2/3 of 18?

26

#15 Date _____

Draw lines to divide each set into equal halves. Circle any leftover in red.

$5 \div 2 = 2 \text{ R } 1$	$7 \div 2 = 3 \text{ R } 1$	$3 \div 2 = 1 \text{ R } 1$
$9 \div 2 = 4 \text{ R } 1$	$11 \div 2 = 5 \text{ R } 1$	$8 \div 2 = 4$

WORD PROBLEMS

What is half of four squared plus four? 12
 What is half of the quantity of seven and three? 5

Today you get to be lazy and leave remainders in your quotient. Enjoy it while it lasts!

$1 \overline{)3 \text{ R } 3}$	$1 \overline{)5 \text{ R } 1}$	$1 \overline{)2 \text{ R } 4}$	$1 \overline{)5 \text{ R } 4}$
Remainder 3	Remainder 1	Remainder 4	Remainder 4

Use multiplication to check your division.

$113 \times 6 = 678$	$119 \times 5 = 595$	$123 \times 8 = 984$	$289 \times 3 = 867$
add the remainder 678	add the remainder 595	add the remainder 984	add the remainder 867

Think of an even number. Multiply it by 5. What number is the last digit of the product? Try it again with a different even number.

0

If this is morning, what time will it be in 3 hours and 20 minutes? $10:18$

Find the missing numbers in each number sentence.

$2 \times 3 \times 4 = 24$	$3 \times 3 \times 3 = 27$
$2 \times 2 = 4$	$10 \times 8 = 2 \times 40$
$2 \times 7 = 28$	$30 \div 6 = 5$
16×84	4×30

$113 \div 6 = 18 \text{ R } 5$	$119 \div 5 = 23 \text{ R } 4$	$123 \div 8 = 15 \text{ R } 3$	$289 \div 3 = 96 \text{ R } 1$
Remainder 5	Remainder 4	Remainder 3	Remainder 1

Multiply the quotient by the divisor to check your division.

$113 \times 6 = 678$	$119 \times 5 = 595$	$123 \times 8 = 984$	$289 \times 3 = 867$
add the remainder 678	add the remainder 595	add the remainder 984	add the remainder 867

$\begin{array}{r} 1391 \\ \times 3 \\ \hline 4173 + 2 \\ \hline 4175 \end{array}$	$\begin{array}{r} 1280 \\ \times 4 \\ \hline 5120 + 1 \\ \hline 1281 \end{array}$	$\begin{array}{r} 1011 \\ \times 8 \\ \hline 8088 + 5 \\ \hline 8093 \end{array}$

How many cubes are in this structure? **7**

How many cubes are in this structure? **11**

WORD PROBLEMS

Twelve is how much less than the square root of one hundred forty-four? **0**

The quantity of thirteen and ten is how much more than half of forty? **3**

Draw lines to MATCH these fractions so they add up to ONE WHOLE. (3.15)

29

Find mixed number quotients.

$9 \overline{)704}$ remainder 7	$5 \overline{)458}$ remainder 3	$8 \overline{)689}$ remainder 1	$3 \overline{)235}$ remainder 1	$7 \overline{)449}$ remainder 1

Divide the matchsticks into SIX equal groups.

What is 1/6 of 24? **4**

What is 2/6 of 24? **8**

What is 3/6 of 24? **12**

Divide the matchsticks into FOUR equal groups.

What is 1/4 of 24? **6**

What is 2/4 of 24? **12**

Divide the matchsticks into EIGHT equal groups.

What is 1/8 of 24? **3**

What is 2/8 of 24? **6**

What is 3/8 of 24? **9**

What is 4/8 of 24? **12**

Divide the marbles into SIX equal groups.

What is 1/6 of 18? **3**

What is 2/6 of 18? **6**

What is 3/6 of 18? **9**

What is 4/6 of 18? **12**

Divide the marbles into SIX equal groups.

What is 1/6 of 12? **2**

What is 2/6 of 12? **4**

What is 3/6 of 12? **6**

What is 4/6 of 12? **8**

What is 5/6 of 12? **10**

What is 6/6 of 12? **12**

$$\frac{1}{12} \text{ of } 36 = 3 \quad \frac{1}{6} \text{ of } 12 = 2 \quad \frac{1}{4} \text{ of } 12 = 3 \quad \frac{3}{12} \text{ of } 36 = 9 \quad \frac{1}{3} \text{ of } 12 = 4 \quad \frac{1}{2} \text{ of } 36 = 18 \quad \frac{1}{12} \text{ of } 36 = 18$$

#16 Date _____

Trace then write each term, then draw a line to match each term to its definition.

numerator _____

denominator _____

fraction _____

divisor _____

quotient _____

The answer to a division problem.

A piece of something.

The bottom number in a fraction, it tells you how many pieces the shape is divided into.

The number by which the dividend is divided.

The top number in a fraction, it tells you how many pieces you have.

Divide each set, including any leftovers.

$7 \div 2 = 3 \frac{1}{2}$	$5 \div 2 = 2.5$	$5 \div 2 = 2.5$
$10 \div 3 = 3 \frac{1}{3}$	$9 \div 3 = 4.5$	$7 \div 3 = 3.5$

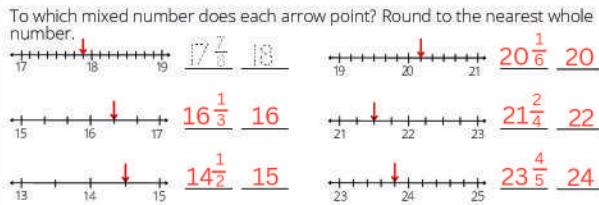
These problems are from page 28 & 29, so you don't have to do the whole problem. Just divide the remainder by the divisor.

$$535 \div 4 = 133 \text{ R3} = \underline{133} \frac{3}{4} \quad 779 \div 5 = 155 \text{ R4} = \underline{155} \frac{4}{5}$$

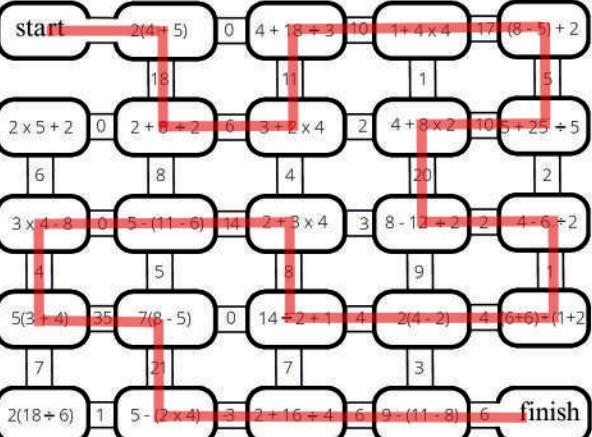
$$317 \div 2 = 158 \text{ R1} = \underline{158} \frac{1}{2} \quad 4175 \div 3 = 1391 \text{ R2} = \underline{1391} \frac{2}{3}$$

$$893 \div 7 = 127 \text{ R4} = \underline{127} \frac{4}{7} \quad 5121 \div 4 = 1280 \text{ R1} = \underline{1280} \frac{1}{4}$$

Name these fractions as mixed numbers and improper fractions.

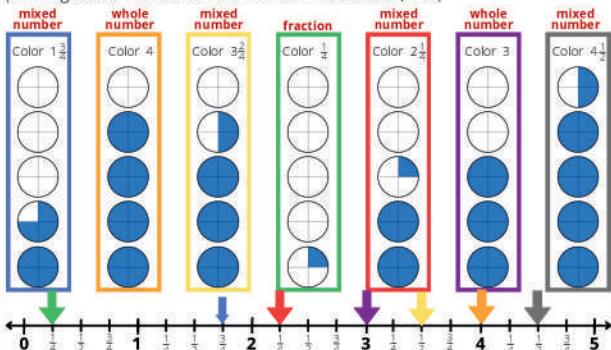

#17 Date _____

Divide. Multiply. Subtract. Bring Down. Repeat.

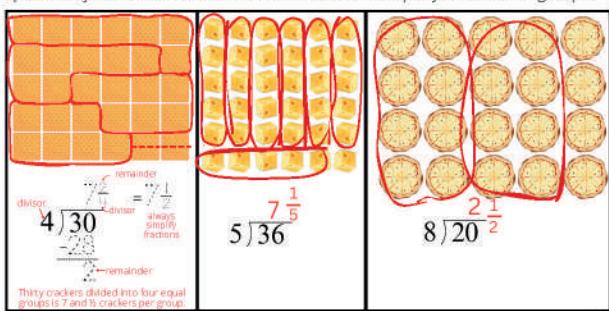

$15 \overline{)255}$	$14 \overline{)350}$	$23 \overline{)529}$	$17 \overline{)306}$
$4 \overline{)260}$	$4 \overline{)340}$	$5 \overline{)360}$	$7 \overline{)434}$
$4 \overline{)10100}$	$7 \overline{)125}$	$8 \overline{)74800}$	$3 \overline{)24525}$

Adding or subtracting by place value (3.8)

add/subtract 1 in the ONES place	add/subtract 1 in the TENS place	add/subtract 1 in the HUNDREDS place			
1 less	1 more	10 less	10 more	100 less	100 more
<u>16</u> , 17, <u>18</u>	<u>17</u> , 127, <u>187</u>	<u>100</u> , 249, <u>349</u>			
<u>9</u> , 10, <u>11</u>	<u>499</u> , 509, <u>519</u>	<u>79</u> , 179, <u>279</u>			
<u>28</u> , 29, <u>30</u>	<u>302</u> , 312, <u>322</u>	<u>33</u> , 133, <u>233</u>			

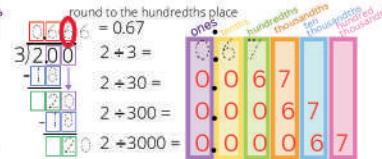
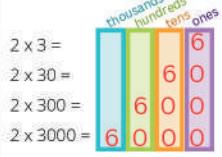
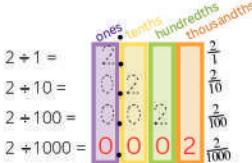
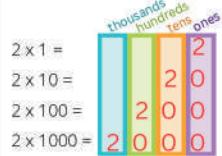


Choose the correct answer to each problem to find your way through this maze. (3.83)



33

Color the number in each colored rectangle. Then draw an arrow that points to the number on the number line below. (3.16)

Draw lines to divide each set into the number of groups specified by the divisor. Circle any REMAINDERS in red, then divide them into the number of groups specified by the divisor. Divide the remainder PIECES equally between the groups.

35

#18 Date _____

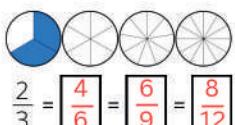
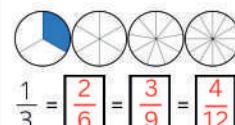
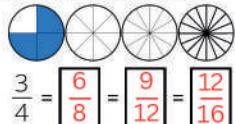
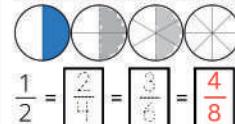
Use your place value chart to find the products and quotients.

$29 \times 10 =$	290	$29 \div 10 =$	2.9	$29 \div 100 =$	0.29
$51 \times 10 =$	510	$51 \div 10 =$	5.1	$51 \div 100 =$	0.51
$68 \times 10 =$	680	$68 \div 10 =$	6.8	$68 \div 100 =$	0.68
$37 \times 10 =$	370	$37 \div 10 =$	3.7	$37 \div 100 =$	0.37
$14 \times 10 =$	140	$14 \div 10 =$	1.4	$14 \div 100 =$	0.14

1 5 6 2

Round to the nearest TEN: 1560
Round to the nearest HUNDRED: 1600
Round to the nearest THOUSAND: 2000
34

1 9.5 5 2





Round to the nearest TEN: 20
Round to the nearest TENTH: 19.6
Round to the nearest HUNDREDTH: 19.55

#19 Date _____

L V X T A O O D I V I S O R P Q
M P J I Y Q N E S U P Z E R O T
F R A C T I O N O F B E H S T R E
L O Y O E K U O R K A T O L N E
A D D G W O Z M O V M O B C E D
M U L T I P L I C A T I O N L N
I C O G O I A N B O X A O Y A I
C T H X R O T A R E M U N D V A
E O U W Q U O T I E N T R I I M
D V O E F I L O T G A O D K U E
F C Z M O U J R H R N O B O Q R
O N O I S I V I D P C O Q D E S

- The answer to a division problem: **quotient**
- The leftover after dividing: **remainder**
- A piece of something: **fraction**
- The bottom number in a fraction, it tells you how many pieces the shape is divided into: **denominator**
- The number by which the dividend is divided: **divisor**
- The top number in a fraction, it tells you how many pieces you have: **numerator**
- Another name for repeated addition: **multiplication**
- Math operation for separating an amount into equal parts: **division**
- A piece of something that always has a denominator of ten or a power of ten: **decimal**
- The answer to a multiplication problem: **product**
- Fractions with the same value are **equivalent**

Find three equivalent fractions for each fraction. Color the circles to match.

You bought a dozen candy bars for 75 cents each. How much did you spend?

\$9.00

What is the total price for 4 churros that cost \$2.50 each?

\$10.00

36

Find the quotients.

$11 \overline{)374}$	$12 \overline{)492}$	$27 \overline{)756}$	$18 \overline{)432}$	$15 \overline{)540}$

$5 \overline{)9804}$	$7 \overline{)5725}$	$4 \overline{)81175}$	$9 \overline{)9005}$

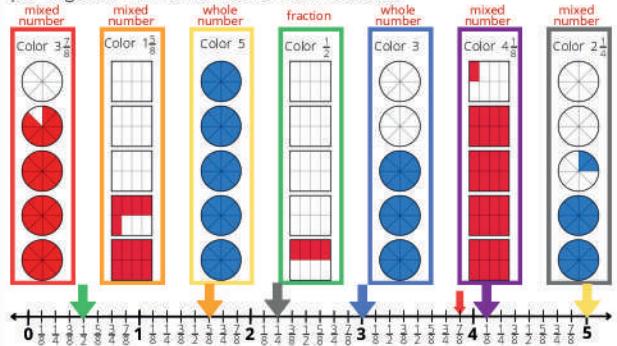
Fill in the blanks to complete each chart.

\square	$\times 20$	$\times 200$	$\times 2000$
4	80	800	8000
3	60	600	6000
2	40	400	4000

$2 \overline{)4.0}$	$2 \overline{)1500}$
1	10
1	100

\square	$\div 2$	$\div 20$	$\div 200$	$\div 2000$
4	2	0.2	0.02	0.002
3	1.5	0.15	0.015	0.0015
2	1	0.1	0.01	0.001

\square	$\times 3$	$\times 30$	$\times 300$
9	27	270	2700
12	36	360	3600
3	9	90	900



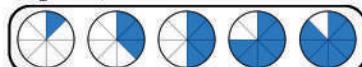
$3 \overline{)9.0}$	$3 \overline{)12}$
3	3
3	3

$3 \overline{)3.0}$	37
3	3

Color the number in each colored rectangle. Then draw an arrow that points to the number on the number line below.

Adding or subtracting by place value (3.8)

add/subtract 2 in the ONES place	2 less 2 more	20 less 20 more	200 less 200 more
22, 25, <u>27</u>	108, 145, <u>168</u>	191, 394, <u>504</u>	
15, 17, <u>19</u>	507, 527, <u>547</u>	79, 279, <u>479</u>	
30, 32, <u>34</u>	248, 268, <u>288</u>	353, 553, <u>753</u>	


Balance these equations. Remember to follow the Order of Operations. (4.31)

	$3 + 5 = 2 \times 4$	$6 + 3^2 = 5 \times 3$	$\sqrt{25} + 3 = 56 \div 7$
		$2 + 4^2 = 6 \times 3$	$6 \times 6 = 3(4 + 8)$
$18 + 2 = 3 \times 3$	$8^2 = 4 \times 2 \times 2$	$2^3 \times 6 = 4 \times 16$	
$5 \times 8 = 4 \times 10$	$5(4 + 5) = 15 \times 3$	$6^2 = 4 \times 9$	
$2(3 + 3) = 48 + 4$	$48 + 8 = \sqrt{36}$	$3^3 - 7 = 4 \times 5$	

#20 Date

Order these fractions from least to greatest, then color them and label them. (All denominators are the same!)

$$\frac{3}{8}, \frac{4}{8}, \frac{6}{8}, \frac{1}{8}, \frac{7}{8}$$

(All of the numerators are one!)

$$\frac{1}{2}, \frac{1}{1}, \frac{1}{4}, \frac{1}{5}, \frac{1}{3}$$

Compare these fractions ($<$, $>$, $=$). (All numerators are one! Larger denominators are smaller pieces.)

$$\frac{1}{2} > \frac{1}{3}$$

$$\frac{1}{4} > \frac{1}{5}$$

$$\frac{1}{3} > \frac{1}{4}$$

$$\frac{1}{5} > \frac{1}{8}$$

Compare these fractions ($<$, $>$, $=$). (The denominators in each pair are the same, so the pieces are the same size!)

$$\frac{3}{4} > \frac{1}{4}$$

$$\frac{5}{9} > \frac{4}{9}$$

$$\frac{2}{4} < \frac{5}{4}$$

$$\frac{1}{7} < \frac{6}{7}$$

Use your fraction circles to compare these fractions.

$$\frac{2}{3} > \frac{3}{5}$$

$$\frac{5}{8} > \frac{3}{5}$$

$$\frac{1}{4} < \frac{4}{5}$$

$$\frac{5}{6} > \frac{3}{4}$$

$$\frac{3}{6} = \frac{1}{2}$$

$$\frac{1}{3} < \frac{3}{4}$$

$$\frac{4}{4} = \frac{5}{5}$$

$$\frac{2}{3} < \frac{7}{8}$$

WORD PROBLEMS What is one third of thirty-six? **12**

How much more is twice the quantity of seven and two than six times three? **0**

What times five is one less than four squared? **3**

38

#21 Date

Identify each shaded part using a fraction, a decimal, words and percentage (when the denominator is 100).

$$\frac{7}{100} 0.07$$

$$\frac{1}{10} 0.1$$

one tenth

$$\frac{19}{100} 0.19$$

$$\frac{19}{100} 0.19$$

nineteen hundredths

$$\frac{1}{1000} 0.001$$

$$\frac{40}{1000} 0.04$$

forty thousandths

$$\frac{9}{1000} 0.009$$

$$\frac{4}{1000} 0.004$$

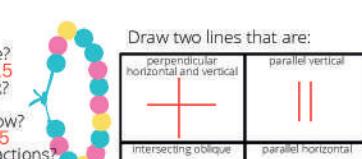
nine thousandths

This bracelet has 15 beads.

What fraction of them are blue?

$$\frac{7}{15}$$

What fraction of them are pink?


$$\frac{5}{15}$$

What fraction of them are yellow?

$$\frac{3}{15}$$

What is the sum of all three fractions?

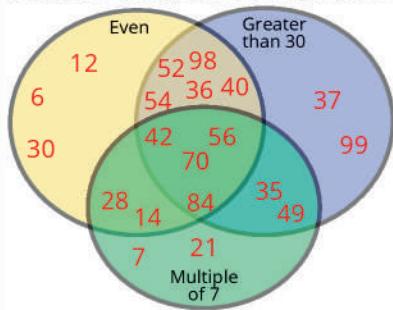
$$\frac{15}{15}$$

Two quarters and one dime is what percent of a dollar?

Each block has 100 squares. Write the percentage, fraction and decimal for each.

$$\frac{44}{100} = 0.44$$

$$\frac{68}{100} = 0.68$$


$$\frac{17}{100} = 0.17$$

$$\frac{63}{100} = 0.63$$

40

39

Find the correct space for each number in this Venn diagram. Cross out numbers as you use them. Circle any leftover numbers that don't fit into the diagram. (3.30)

21 12
35 54
30 37
6 9
52 14
49 36
40 42
28 56
15 7
98 70
99 84

Use your place value chart to find the products and quotients.

$35 \times 10 = 350$	$35 \div 10 = 3.5$	$35 + 100 = 0.35$
$83 \times 10 = 830$	$83 \div 10 = 8.3$	$83 \div 100 = 0.83$
$24 \times 20 = 480$	$24 \div 20 = 1.2$	$24 + 200 = 0.12$
$26 \times 20 = 520$	$26 \div 20 = 1.3$	$26 \div 200 = 0.13$
$44 \times 20 = 880$	$44 \div 20 = 2.2$	$44 \div 200 = 0.22$

Use words to name the following numbers:

345,012 three hundred forty-five and twelve
9,003,199 nine million, three thousand one hundred ninety-nine
14,300,005 fourteen million, three hundred thousand and five

What year is one century after 1776? 1876

41

#22 Date _____

Draw lines to match terms.

indeterminate	1
mixed number	0
0	1
undefined	2
whole number	0
1	35/4
improper fraction	11/2

Trace each term.

indeterminate
mixed number
undefined
whole number
integer
improper fraction

Draw lines to match the mixed numbers, pictures, decimals and improper fractions.

$1\frac{1}{10}$			1.7	$\frac{18}{10}$
$1\frac{4}{10}$			1.8	$\frac{13}{10}$
$1\frac{3}{10}$			1.4	$\frac{11}{10}$
$1\frac{8}{10}$			1.3	$\frac{17}{10}$
$1\frac{7}{10}$			1.1	$\frac{14}{10}$

What percent:

is shaded? 73%
 is not shaded? 27%

is shaded? 68%
 is not shaded? 32%

Add the percentages 100%

Add the percentages 100%

#23 Date _____

Add and subtract these mixed numbers. You can stack them or convert them to improper fractions.

$1\frac{1}{5} + 2\frac{3}{5} = 3\frac{4}{5}$	$4\frac{2}{3} - 1\frac{1}{3} = 3\frac{1}{3}$	$3\frac{1}{6} + 1\frac{1}{6} = 4\frac{1}{3}$
$6\frac{1}{2} - 3\frac{1}{2} = 3$	$3\frac{3}{4} + 3\frac{1}{4} = 7$	$5\frac{3}{8} - 2\frac{5}{8} = 2\frac{6}{8}$

Find the missing fractions to make each number sentence true.

$\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$	$\frac{3}{5} + \frac{1}{5} = \frac{4}{5}$	$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1$	$\frac{4}{6} + \frac{1}{6} = \frac{5}{6}$
$\frac{4}{8} - \frac{3}{8} = \frac{1}{8}$	$\frac{6}{2} + \frac{3}{2} = \frac{9}{2} = 4\frac{1}{2}$	$\frac{7}{8} - \frac{4}{8} = \frac{3}{8}$	$\frac{2}{6} + \frac{2}{6} = \frac{4}{6}$

This grid has 100 squares. What percentage is each color?

percent	fraction	decimal	percent	fraction	decimal
11%	$\frac{11}{100}$	0.11	28%	$\frac{28}{100}$	0.28
17%	$\frac{17}{100}$	0.17	17%	$\frac{17}{100}$	0.17
27%	$\frac{27}{100}$	0.27	Add all of the percentages: $11 + 28 + 17 + 17 + 27 = 100$		

Why do the percentages of each color all add up to 100%? _____

Percent means per hundred

Do percentages always add up to 100%? Yes _____
44

Add the fractions. Color the sum of the two fraction pictures in each space.

$$\frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$

$$\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$$

$$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1$$

$$\frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$$

$$\frac{2}{5} + \frac{3}{5} = \frac{5}{5} = 1$$

$$\frac{4}{6} + \frac{2}{6} = \frac{6}{6} = 1$$

$$\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$$

$$\frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$$

$$\frac{4}{6} + \frac{2}{6} = \frac{6}{6} = 1$$

How many cubes are in this structure?

9 cubes

How many cubes are in this structure?

30 cubes

Write the part of this hexagon that is NOT shaded as a fraction and a decimal. What is a hexagon?

7/10

A hexagon has six sides

Write the shaded part of this pentagon as a fraction and a decimal. What is a pentagon?

4/5

A pentagon has five sides

If I pay for my meal with a ten dollar bill, what is my change? (2.51)

MENU	
pizza	\$5.49
burger	\$3.59
hot dog	\$2.99
fries	\$2.79
soda	\$2.19

\$2.32

45

#24 Date _____

List all of the prime numbers less than 50. Hint: There are 15 of them.

List the factors of:

12: 1, 2, 3, 4, 6, 12

15: 1, 3, 5, 15

18: 1, 2, 3, 6, 9, 18

21: 1, 3, 7, 21

24: 1, 2, 3, 4, 6, 8, 12, 24

36: 1, 2, 3, 4, 6, 9, 12, 18, 36

Name the greatest common factor (GCF) of:

12 and 15

12 and 36

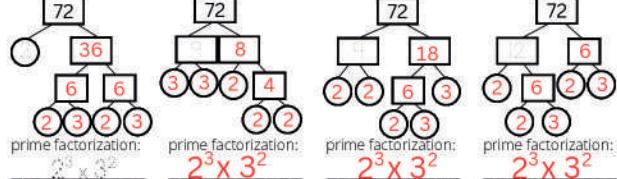
12

12

18 and 21

24 and 36

3


12

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{12}{15} \div \frac{3}{3} = \frac{4}{5} \quad \frac{12}{36} \div \frac{12}{12} = \frac{1}{3} \quad \frac{18}{21} \div \frac{3}{3} = \frac{6}{7} \quad \frac{24}{36} \div \frac{12}{12} = \frac{2}{3}$$

List the factors of 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Factor the number in the top box of each factor tree. The composite numbers go in the rectangles and the prime numbers go in the circles.

46

Find the quotients.

$$\begin{array}{r} 28 \\ \hline 23 \overline{)644} \\ 46 \\ \hline 184 \\ 184 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 26 \\ \hline 19 \overline{)494} \\ 38 \\ \hline 114 \\ 114 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 27 \\ \hline 34 \overline{)918} \\ 68 \\ \hline 238 \\ 238 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 24 \\ \hline 21 \overline{)504} \\ 42 \\ \hline 84 \\ 84 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 28 \\ \hline 28 \overline{)784} \\ 56 \\ \hline 224 \\ 224 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 7825 \\ \hline 8 \overline{)62600} \\ 56 \\ \hline 66 \\ 64 \\ \hline 20 \\ 16 \\ \hline 40 \\ 40 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 8275 \\ \hline 6 \overline{)49650} \\ 48 \\ \hline 16 \\ 12 \\ \hline 42 \\ 30 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 6535 \\ \hline 4 \overline{)26140} \\ 24 \\ \hline 21 \\ 20 \\ \hline 14 \\ 12 \\ \hline 20 \\ 20 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 91132 \\ \hline 7 \overline{)63924} \\ 63 \\ \hline 9 \\ 7 \\ \hline 22 \\ 21 \\ \hline 14 \\ 14 \\ \hline 0 \end{array}$$

Your scores were 139, 95 and 111. How much higher was your highest score than your lowest score?

44 points

How many inches tall are you if you are 5' 3" tall?

63 inches

The total price of 3 pounds of apples was \$5.37. What was the price per pound?

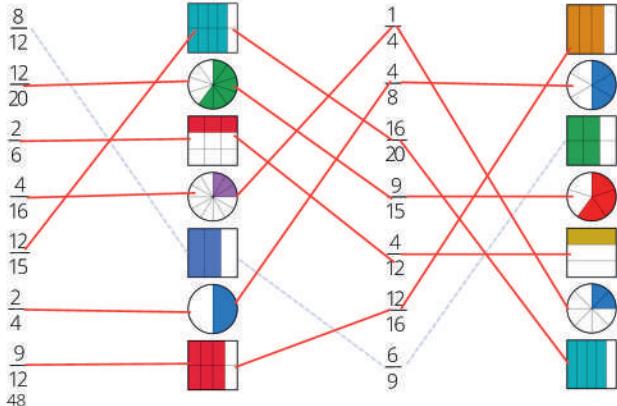
\$1.79

How many yards is one half of a mile?

880 yards

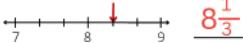
#25 Date _____

Find equivalent fractions.


$$\frac{1}{3} \times \frac{2}{2} = \frac{2}{6} \quad \frac{1}{3} \times \frac{3}{3} = \frac{3}{9} \quad \frac{1}{3} \times \frac{4}{4} = \frac{4}{12} \quad \frac{1}{3} \times \frac{5}{5} = \frac{5}{15} \quad \frac{1}{3} \times \frac{6}{6} = \frac{6}{18}$$

$$\frac{24}{36} \div \frac{2}{2} = \frac{12}{18} \quad \frac{24}{36} \div \frac{3}{3} = \frac{8}{12} \quad \frac{24}{36} \div \frac{4}{4} = \frac{6}{9} \quad \frac{24}{36} \div \frac{6}{6} = \frac{4}{6} \quad \frac{24}{36} \div \frac{12}{12} = \frac{2}{3}$$

Find three equivalent fractions for each fraction.



$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{8}{12} \quad \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16} \quad \frac{4}{5} = \frac{8}{10} = \frac{12}{15} = \frac{16}{20}$$

Draw lines to match the equivalent fractions.

47

To which mixed number does each arrow point?

Use words to write $32\frac{5}{8}$ Thirty-two and five eighths.

Use words to write $57\frac{7}{10}$ Fifty-seven and seven tenths.

Use words to write $43.\overline{7}$ Forty-three and seven tenths.

What is $\frac{3}{4}$ of 36? 27 $36/4 = 9$ Divide 36 into four equal parts.
 $9 \times 3 = 27$ You have 3 of those parts.

What is $\frac{5}{8}$ of 40? 25

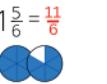
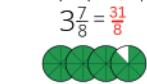
What is $\frac{2}{3}$ of 27? 18

What is $\frac{1}{4}$ of 28? 7

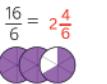
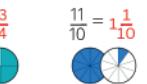
What is $\frac{4}{5}$ of 32? 25.6

How much change will you receive if you pay for each item with \$1.00? Write each amount using a cent sign then a dollar sign. (3.18)

Draw three circles. Divide one circle into fourths, one into fifths and one into sixths. Shade one piece of each circle. Beneath each circle, write two fractions: the part shaded and the part not shaded. Add both fractions for each circle.

$$\frac{1}{4} + \frac{3}{4} = 1$$



$$\frac{1}{5} + \frac{4}{5} = 1$$

$$\frac{1}{6} + \frac{5}{6} = 1$$

Convert the mixed numbers to improper (top heavy) fractions.

Convert the improper fractions to mixed numbers.

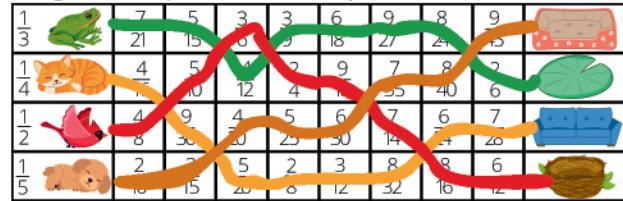
Fill in the blanks to complete each chart.

	x30	x300	x3000
3	90	900	9000
6	180	1800	18000
9	270	2700	27000

	+3	+30	+300	+3000
3	1	0.1	0.01	0.001
6	2	0.2	0.02	0.002
9	3	0.3	0.03	0.003

	x4	x40	x400
4	16	160	1600
8	32	320	3200
12	48	480	4800

	+4	+40	+400	+4000
4	1	0.1	0.01	0.001
8	2	0.2	0.02	0.002
12	3	0.3	0.03	0.003

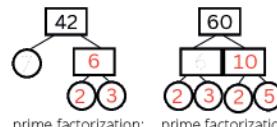

#26 Date _____

Rename the fractions so they have a common denominator, then add or subtract the answer to its simplest form.

$$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1 \quad \frac{1}{2} + \frac{3}{4} = \frac{5}{4} = 1\frac{1}{4}$$

$$\frac{5}{6} + \frac{2}{3} = \frac{1}{6} \quad \frac{2}{3} - \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \quad \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \quad \frac{5}{6} - \frac{2}{3} = \frac{1}{6}$$

Help each animal find its bed by drawing a line from the fraction in its box through all of the equivalent fractions until you reach the other side.



List the **factors** of 42: 1, 2, 3, 6, 7, 14, 21, 42

List the **factors** of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

What is the Greatest Common Factor (GCF) of 42 and 60? 6

Factor the number in the top box of each factor tree.

prime factorization: $7 \times 2 \times 3$

prime factorization: $2 \times 3 \times 2 \times 5$

Reduce this fraction to its simplest form two different ways.

$$\frac{42}{60} \quad \frac{42 \div 6}{60 \div 6} = \frac{7}{10}$$

$$\frac{7 \times 2 \times 3}{2 \times 3 \times 2 \times 5} = \frac{7}{10}$$

#27 Date _____

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{12}{16} \div \frac{4}{4} = \frac{3}{4} \quad \frac{24}{30} \div \frac{6}{6} = \frac{4}{5} \quad \frac{18}{36} \div \frac{18}{18} = \frac{1}{2} \quad \frac{24}{48} \div \frac{24}{24} = \frac{1}{2}$$

List the first six multiples of:

2, 4, 6, 8, 10, 12, 14

3, 6, 9, 12, 15, 18, 21

4, 8, 12, 16, 20, 24, 28

5, 10, 15, 20, 25, 30, 35

12, 24, 36, 48, 60, 72, 84

15, 30, 45, 60, 75, 90, 105

Name the LEAST common multiple (LCM) of: (4, 19)

2 and 3 6 2 and 5 10 2 and 4 4

3 and 5 15 3 and 4 12 4 and 12 12

12, 24, 36, 48, 60, 72, 84

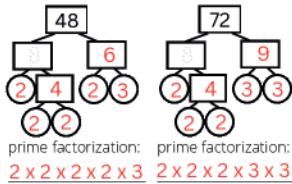
15, 30, 45, 60, 75, 90, 105

Rename the fractions so they have a common denominator, then add or subtract. Reduce the answer to its simplest form.

$$\frac{1}{2} + \frac{2}{3} = \frac{7}{6} = \frac{1}{6} \quad \frac{4}{3} + \frac{1}{4} = \frac{7}{12} \quad \frac{3}{5} + \frac{3}{4} = \frac{27}{20} = \frac{27}{20} \quad \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

$$\frac{2}{3} - \frac{1}{2} = \frac{1}{6} \quad \frac{4}{5} - \frac{1}{8} = \frac{3}{10} \quad \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad \frac{3}{5} - \frac{1}{3} = \frac{4}{15}$$

$$2\frac{1}{2} + 1\frac{1}{4} = \frac{15}{4} \quad 3\frac{1}{2} + 2\frac{2}{3} = \frac{37}{6} \quad 1\frac{3}{4} + 1\frac{1}{3} = \frac{37}{12}$$


$$3\frac{1}{4} - 1\frac{1}{3} = \frac{23}{12} \quad 2\frac{1}{2} - 1\frac{3}{10} = \frac{9}{10} \quad 3\frac{6}{7} - 1\frac{1}{2} = \frac{3}{2}$$

Grandma was born in 1953. How old will she be this year? Answers may vary

How old was she in the year 2000? 47

List the **factors** of 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
 List the **factors** of 72: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
 What is the Greatest Common Factor (GCF) of 48 and 72? 24

Factor the number in the top box of each factor tree.

Reduce this fraction to its simplest form two different ways.

$$\frac{48}{72} \quad \frac{48 \div 24}{72 \div 24} = \frac{2}{3}$$

Cancel common factors from the numerator and denominators.

$$\frac{2 \times 8 \times 3 \times 2 \times 3}{2 \times 8 \times 3 \times 3 \times 3} = \frac{2}{3}$$

prime factorization: prime factorization:

$2 \times 2 \times 2 \times 2 \times 3$ $2 \times 2 \times 2 \times 3 \times 3$

This is a tricky puzzle. What number does each letter represent? (3.59)

$$X + X - X = 9$$

$$X + 5 Y = 7^2$$

$$2 Z - Z = 7$$

$$X + Z + Y = 24$$

$$X - Y = 1$$

$$Z^2 = 49$$

$$X + 1 = 10$$

$$2 Y = 16$$

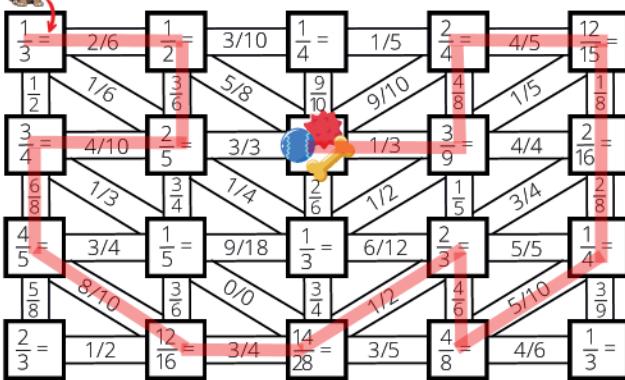
$$X = 9$$

$$Y = 8$$

$$Z = 7$$

Find the lowest common denominator (LCD) of each group of fractions. Then RENAME each fraction using the LCD. Then order the fractions from the least to the greatest. (4.19)

Fractions	<u>LCD 24</u>	$\frac{2}{6}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{1}{4}$
Equivalent Fractions with LCD		$\frac{8}{24}$	$\frac{12}{24}$	$\frac{18}{24}$	$\frac{21}{24}$	$\frac{6}{24}$
Order fractions least to greatest		$\frac{6}{24}$	$\frac{8}{24}$	$\frac{12}{24}$	$\frac{18}{24}$	$\frac{21}{24}$


Fractions	<u>LCD 36</u>	$\frac{1}{4}$	$\frac{7}{9}$	$\frac{2}{3}$	$\frac{9}{12}$	$\frac{5}{6}$
Equivalent Fractions with LCD		$\frac{9}{36}$	$\frac{28}{36}$	$\frac{24}{36}$	$\frac{27}{36}$	$\frac{30}{36}$
Order fractions least to greatest		$\frac{9}{36}$	$\frac{24}{36}$	$\frac{27}{36}$	$\frac{28}{36}$	$\frac{30}{36}$

53

#28 Date _____

Fraction Colored	Not Colored	Add both fractions. Write the number sentence.	
		$\frac{5}{9} + \frac{4}{9} = \frac{9}{9} = 1$	
		$\frac{5}{8} + \frac{3}{8} = \frac{8}{8} = 1$	
		$\frac{2}{5} + \frac{3}{5} = \frac{5}{5} = 1$	
		$\frac{2}{7} + \frac{5}{7} = \frac{7}{7} = 1$	

Help Fido find his toy. Match equivalent fractions to color a path through the maze. Circle the indeterminate fraction!

54

Find the missing fractions to make each number sentence true.

$$\frac{1}{4} + \frac{3}{8} = \frac{7}{8} \quad \frac{7}{10} + \frac{1}{10} = \frac{4}{5} \quad \frac{1}{3} + \frac{7}{6} = 1\frac{1}{2} \quad \frac{5}{6} + \frac{1}{6} = 1$$

$$\frac{5}{8} - \frac{1}{2} = \frac{1}{8} \quad \frac{1}{6} + \frac{1}{3} = \frac{1}{2} \quad \frac{4}{5} - \frac{13}{10} = \frac{1}{2} \quad \frac{1}{3} + \frac{2}{6} = \frac{4}{6}$$

$$1\frac{1}{3} + 2\frac{1}{6} = 3\frac{1}{2} \quad 3\frac{1}{4} - \frac{7}{12} = 1\frac{2}{3} \quad 2\frac{3}{8} - \frac{5}{8} = 1\frac{3}{4}$$

Each block has 100 squares. Write the percentage, fraction and decimal for each.

$$54\% = \frac{64}{100} = 0.64$$

$$91\% = \frac{91}{100} = 0.91$$

$$49\% = \frac{49}{100} = 0.49$$

$$59\% = \frac{59}{100} = 0.59$$

There are twelve pencils in the medium-sized box. The small box has half as many. The large box has five times as many pencils as the small box.

How many pencils are in the large box? 30

If I buy one box of each size, how many pencils will I have? 48

The small box of pencils costs \$1.80. The medium-sized box costs \$2.40. How much more per pencil do the pencils in the small box cost? 10 cents

The large box costs \$3.00. What is the cost per pencil in the large box?

10 cents

#29 Date _____

Subtract fractions from whole numbers. Draw pictures if it helps.

$$2\frac{16}{8} - \frac{3}{8} = \frac{13}{8} = 1\frac{5}{8}$$

$$3\frac{9}{3} - \frac{2}{3} = \frac{7}{3}$$

$$1 - \frac{2}{5} = \frac{3}{5}$$

$$3 - \frac{1}{3} = 2\frac{2}{3}$$

$$2 - \frac{3}{4} = 1\frac{1}{4}$$

$$4 - \frac{5}{6} = 2\frac{1}{6}$$

$$2 - \frac{3}{8} = 1\frac{5}{8}$$

$$1 - \frac{2}{3} = \frac{1}{3}$$

$$1 - \frac{1}{4} = \frac{3}{4}$$

$$4 - \frac{4}{5} = 3\frac{1}{5}$$

$$3 - \frac{1}{2} = 2\frac{1}{2}$$

Find the missing fractional subtrahend in each number sentence.

$$\frac{14}{8} - \frac{4}{8} = \frac{10}{8} = 1\frac{2}{8}$$

$$\frac{4}{6} - \frac{4}{6} = \frac{0}{6} = 0$$

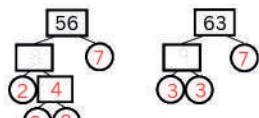
$$\frac{2}{6} - \frac{2}{6} = \frac{0}{6} = 0$$

$$\frac{9}{10} - \frac{9}{10} = \frac{0}{10} = 0$$

$$\frac{5}{6} - \frac{5}{6} = \frac{0}{6} = 0$$

$$\frac{1}{8} - \frac{1}{8} = \frac{0}{8} = 0$$

56


55

List the **factors** of 56: 1, 2, 4, 7, 8, 14, 28, 56

List the **factors** of 63: 1, 3, 7, 9, 21, 63

What is the Greatest Common Factor (GCF) of 56 and 63? 7

Factor the number in the top box of each factor tree.

prime factorization: $2 \times 2 \times 2 \times 7$ prime factorization: $3 \times 3 \times 7$

Reduce this fraction to its simplest form two different ways.

$$\frac{56}{63} \quad \frac{56 + 7F}{63 + 7F} = \frac{8}{9}$$

Cancel common factors from the numerator and denominators.

$$\frac{2 \times 2 \times 2 \times 7}{3 \times 3 \times 7} = \frac{8}{9}$$

What is the square root of the product of sixteen and nine? 12

Estimate the product of 189 and 304 by rounding both factors to the nearest hundred before multiplying. 60,000

Find the quotients.

$$\begin{array}{r} 6825 \\ \hline 3 \overline{)20475} \\ -56 \\ \hline 20 \\ -16 \\ \hline 40 \\ -40 \\ \hline 0 \end{array} \quad \begin{array}{r} 9450 \\ \hline 9 \overline{)85050} \\ -81 \\ \hline 40 \\ -36 \\ \hline 40 \\ -36 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 81234 \\ \hline 5 \overline{)41170} \\ -40 \\ \hline 11 \\ -10 \\ \hline 17 \\ -15 \\ \hline 20 \\ -20 \\ \hline 0 \end{array} \quad \begin{array}{r} 71797 \\ \hline 7 \overline{)54579} \\ -49 \\ \hline 57 \\ -56 \\ \hline 19 \\ -14 \\ \hline 57 \\ -56 \\ \hline 0 \end{array}$$

List the first six multiples of:

2, 4, 6, 8, 10, 12, 14

3, 6, 9, 12, 15, 18, 21

4, 8, 12, 16, 20, 24, 28

5, 10, 15, 20, 25, 30, 35

6, 12, 18, 24, 30, 36, 42

9, 18, 27, 36, 45, 54, 63

12, 24, 36, 48, 60, 72, 84

Name the LEAST common multiple (LCM) of:

2 and 3 6 2 and 4 4 2 and 5 10

3 and 4 12 3 and 5 15 3 and 6 6

4 and 5 20 4 and 8 8 4 and 12 12

Add these fractions. You can only add fractions with common denominators.

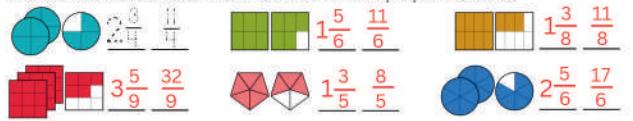
1. Find the LEAST COMMON MULTIPLE of both denominators.

2. RENAME the fractions. Multiply each of them by ONE, to find their EQUIVALENT fractions.

3. Simplify your answer. No improper fractions.

$$\frac{3}{5} + \frac{3}{5} = \frac{6}{5} = 1\frac{1}{5} \quad \frac{1}{4} + \frac{3}{8} = \frac{5}{8} \quad \frac{1}{2} + \frac{1}{3} = \frac{5}{6} \quad \frac{1}{4} + \frac{2}{3} = \frac{11}{12}$$

$$\frac{2}{3} + \frac{1}{5} = \frac{13}{15} \quad \frac{5}{6} + \frac{2}{3} = 1\frac{1}{2} \quad \frac{1}{2} + \frac{3}{5} = \frac{11}{10} \quad \frac{3}{4} + \frac{1}{5} = \frac{19}{20}$$


Subtract these fractions. Find a common denominator first.

$$\frac{4}{6} - \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \quad \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \quad \frac{3}{5} - \frac{1}{2} = \frac{1}{10} \quad \frac{4}{5} - \frac{1}{4} = \frac{9}{20}$$

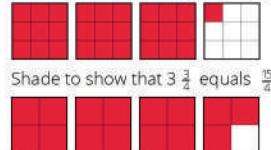
$$\frac{1}{2} - \frac{4}{9} = \frac{1}{18} \quad \frac{5}{6} - \frac{1}{2} = \frac{1}{3} \quad \frac{3}{4} - \frac{1}{3} = \frac{5}{12} \quad \frac{4}{5} - \frac{2}{3} = \frac{2}{15}$$

#30 Date

Name these fractions as mixed numbers and improper fractions.

Mixed number to improper fraction.

1. Multiply the denominator of the fraction by the whole number.


2. Add the numerator of the fraction.

3. The denominator remains the same.

$$\frac{21}{26} \quad \frac{6 \times 3 + 19}{18 + 1} = \frac{19}{6}$$

$$\begin{array}{ll} 3\frac{5}{6} = \frac{23}{6} & 2\frac{1}{2} = \frac{5}{2} \\ 2\frac{1}{4} = \frac{9}{4} & 1\frac{3}{5} = \frac{8}{5} \\ 3\frac{5}{8} = \frac{29}{8} & 3\frac{4}{5} = \frac{19}{5} \\ 1\frac{2}{3} = \frac{5}{3} & 2\frac{1}{3} = \frac{7}{3} \end{array} \quad \begin{array}{ll} \frac{13}{6} = 2\frac{1}{6} & \frac{14}{4} = 3\frac{1}{2} \\ \frac{4}{3} = 1\frac{1}{3} & \frac{14}{5} = 2\frac{4}{5} \\ \frac{18}{8} = 2\frac{1}{4} & \frac{9}{2} = 4\frac{1}{2} \\ \frac{5}{2} = 2\frac{1}{2} & \frac{7}{3} = 2\frac{1}{3} \end{array}$$

Shade to show that $3\frac{1}{9}$ equals $\frac{28}{9}$.

Shade to show that $3\frac{1}{4}$ equals $\frac{15}{4}$.

Shade to show that $3\frac{2}{3}$ equals $\frac{18}{5}$.

#31 Date

Multiply fractions by fractions. Always simplify!

$$\begin{array}{ll} \frac{4}{4} \times \frac{1}{2} = \frac{4}{8} = \frac{1}{2} & \frac{3}{5} \times \frac{1}{3} = \frac{3}{15} = \frac{1}{5} \\ \cancel{\text{one half OF}} \quad \cancel{\text{one whole}} & \cancel{\text{one third OF}} \quad \cancel{\text{three fifths}} \\ \cancel{\text{one half}} & \cancel{\text{one half}} \end{array} \quad \begin{array}{ll} \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} & \\ & \end{array}$$

$$\begin{array}{ll} \frac{4}{5} \times \frac{1}{2} = \frac{2}{10} = \frac{1}{5} & \frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4} \quad \frac{1}{2} \times \frac{2}{3} = \frac{2}{6} = \frac{1}{3} \quad \frac{3}{8} \times \frac{1}{3} = \frac{3}{24} = \frac{1}{8} \\ \cancel{\text{one half OF}} \quad \cancel{\text{one whole}} & \cancel{\text{one third OF}} \quad \cancel{\text{three fifths}} \end{array} \quad \begin{array}{ll} \frac{2}{5} \times \frac{5}{6} = \frac{1}{3} & \frac{2}{9} \times \frac{3}{4} = \frac{1}{6} \quad \frac{1}{8} \times \frac{4}{5} = \frac{1}{10} \quad \frac{3}{5} \times \frac{5}{9} = \frac{1}{3} \\ \cancel{\text{one half}} & \cancel{\text{one half}} \end{array}$$

Multiply fractions by WHOLE numbers. Always simplify!

$$\begin{array}{ll} \frac{1}{2} \times 3\frac{3}{1} = \frac{1}{2} \times \frac{6}{1} = \frac{6}{2} = 3 & \frac{5}{6} \times 3\frac{3}{1} = \frac{5}{6} \times \frac{15}{1} = \frac{75}{6} = 12\frac{3}{2} \\ \cancel{\text{one half, three times}} & \cancel{\text{one sixth, three times}} \\ \cancel{\text{one half}} & \cancel{\text{one half}} \end{array} \quad \begin{array}{ll} \frac{2}{3} \times 4 = \frac{8}{3} = 2\frac{2}{3} & \\ & \end{array}$$

$$\begin{array}{ll} \frac{1}{3} \times 3\frac{3}{1} = & \frac{1}{4} \times 2 = \frac{1}{2} \quad 6 \times \frac{1}{4} = 1\frac{1}{2} \quad \frac{3}{5} \times 2 = 1\frac{1}{5} \\ \cancel{\text{one half, three times}} & \cancel{\text{one half}} \end{array} \quad \begin{array}{ll} \frac{2}{5} \times 5 = 2 & 4 \times \frac{1}{8} = \frac{1}{2} \quad 3 \times \frac{5}{12} = 1\frac{1}{4} \quad \frac{5}{8} \times 4 = 2\frac{1}{2} \\ & \end{array}$$

Your family drove 1400 miles on a five-day trip to a family reunion. What was the average number of miles your family drove each day?

$$1400/5 = 280$$

List the factors of: 10: <u>1, 2, 5, 10</u>	Name the greatest common factor (GCF) of: 10 and 15 <u>5</u>
12: <u>1, 2, 3, 4, 6, 12</u>	18 and 24 <u>6</u>
15: <u>1, 3, 5, 15</u>	
18: <u>1, 2, 3, 6, 9, 18</u>	
20: <u>1, 2, 4, 5, 10, 20</u>	12 and 15 <u>3</u>
24: <u>1, 2, 3, 4, 6, 8, 12, 24</u>	20 and 24 <u>4</u>

Rename each fraction in its simplest form. (Divide both numerator and denominator by the GCF)

$$\frac{10}{15} \div \frac{5}{5} = \frac{2}{3} \quad \frac{18}{24} \div \frac{6}{6} = \frac{3}{4} \quad \frac{12}{15} \div \frac{3}{3} = \frac{4}{5} \quad \frac{20}{24} \div \frac{4}{4} = \frac{5}{6}$$

Find the common denominator, then add the mixed numbers.

$$\begin{array}{r} 1\frac{2}{3} \\ + 2\frac{3}{4} \\ \hline 4\frac{5}{12} \end{array} \quad \begin{array}{r} 2\frac{1}{4} \\ + 3\frac{1}{2} \\ \hline 5\frac{3}{4} \end{array} \quad \begin{array}{r} 1\frac{2}{3} \\ + 4\frac{5}{6} \\ \hline 6\frac{1}{2} \end{array} \quad \begin{array}{r} 3\frac{1}{4} \\ + 2\frac{1}{2} \\ \hline 5\frac{3}{4} \end{array} \quad \begin{array}{r} 1\frac{7}{8} \\ + 3\frac{1}{4} \\ \hline 5\frac{1}{8} \end{array}$$

Trace each term. Draw lines to match terms and definitions.

factor
multiple
greatest common factor
least common multiple
common denominator

- the smallest integer divisible by each of the given factors (LCM)
- a shared multiple of the denominators of two fractions
- divides another number evenly
- the product of a number and an integer
- (GCF) the largest factor that divides the given integers evenly

61

#32 Date _____

Divide fractions by fractions. Always simplify!

Never divide by a fraction, instead multiply by the reciprocal.

$$\frac{2}{3} \times \frac{1}{3} = \frac{2}{9} \quad \frac{3}{4} \times \frac{1}{8} = \frac{3}{32}$$

how many times will $\frac{1}{3}$ fit into $\frac{2}{3}$?

how many times will $\frac{1}{8}$ fit into $\frac{3}{4}$?

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times 4 = 2$$

how many times will $\frac{1}{4}$ fit into $\frac{1}{2}$?

$$\frac{2}{5} \div \frac{1}{5} = 2 \quad \frac{8}{10} \div \frac{1}{5} = \frac{8}{2} = 4 \quad \frac{2}{3} \div \frac{1}{6} = 4 \quad \frac{3}{4} \div \frac{1}{4} = 3$$

Divide whole numbers by fractions. Always simplify!

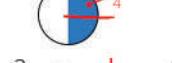
Never divide by a fraction, instead multiply by the reciprocal.

$$2 \times \frac{12}{21} = \frac{12}{21} \quad 2 \times \frac{13}{18} = 6 \quad 3 \div \frac{3}{8} = 8$$

how many times will $\frac{1}{2}$ fit into 2?

how many times will $\frac{1}{3}$ fit into 2?

how many times will $\frac{3}{8}$ fit into 3?


$$4 \div \frac{2}{5} = 10 \quad 1 \div \frac{5}{6} = \frac{1}{6} \quad 2 \div \frac{7}{8} = 2\frac{2}{7} \quad 1 \div \frac{1}{4} = 4$$

Divide fractions by whole numbers. Always simplify!

Multiply by the reciprocal.

$$\frac{1}{2} \times \frac{2}{1} = \frac{1}{1} \quad \frac{3}{4} \times \frac{1}{3} = \frac{1}{4} \quad \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$

How much is $\frac{1}{2}$ divided into two equal pieces?

How much is $\frac{1}{3}$ divided into three equal pieces?

How much is $\frac{1}{4}$ divided into two equal pieces?

$$\frac{2}{5} \div 2 = \frac{1}{5} \quad \frac{1}{2} \div 5 = \frac{1}{10} \quad \frac{2}{3} \div 4 = \frac{1}{6} \quad \frac{6}{8} \div 3 = \frac{1}{4}$$

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS). (3.83)

$\text{donut} = 3$	$\text{donut} = 5$	$\text{donut} = 9$
$\text{donut} - \text{donut} = -2$	$\text{donut} \times \text{donut} = 27$	$((\text{donut} - \text{donut}) - \text{donut}) = \text{donut}$
$\text{donut} - \text{donut} = -6$	$\text{donut} + \text{donut} = 18$	$\text{donut}^2 - 8 \times \text{donut} = \text{donut}$
$\text{donut} \times \text{donut} = 18$	$\text{donut}^2 = 81$	$\text{donut}(\text{donut} + \text{donut}) = 72$

You shared a chocolate bar equally with your brother. He gave half of what you gave him to his friend. What fraction did the friend get?

What percentage is that?
 $1/4$
25%

Trace then write each term, then draw a line to match each term to its definition. (3.59)

coefficient
variable

- A letter or symbol that represents a number.
- A number in front of a variable. It gets multiplied by the variable.

coefficient variable
 $5A = 20$

Math Rule:
When you have a VARIABLE and a COEFFICIENT together in a number sentence, they are multiplied together. You don't need a multiplication symbol.

Fill in the missing factors or products to complete each number sentence.

$$\begin{array}{l} 7 \times 8 = 56 \\ 4 \times 7 = 28 \\ 6 \times 8 = 48 \\ 5 \times 9 = 45 \\ 3 \times 12 = 36 \end{array}$$

Color the COEFFICIENTS red and the VARIABLES green in these number sentences.

Find the value of the VARIABLE in each number sentence.
See? No multiplication symbol between the variable and the coefficient!

$$\begin{array}{l} 7X = 56 \quad X = 8 \\ 4Y = 28 \quad Y = 7 \\ 6Z = 48 \quad Z = 8 \\ 5A = 45 \quad A = 9 \\ 3B = 36 \quad B = 12 \end{array}$$

63

#33 Date _____

Complete the chart.

- To convert a fraction to a decimal, divide the numerator by the denominator.
- To convert a decimal to a percent, multiply it by 100.
- Use shortcuts when the denominator is ten or a factor of ten.

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{10}$	0.1	10%
	$\frac{2}{10}$	0.2	20%
	$\frac{3}{10}$	0.3	30%
	$\frac{5}{10}$	0.5	50%
	$\frac{6}{10}$	0.6	60%
	$\frac{7}{10}$	0.7	70%
	$\frac{9}{10}$	0.9	90%
	$\frac{1}{1}$	1	100%
	$\frac{1}{4}$	0.25	25%
	$\frac{2}{4}$	0.5	50%
	$\frac{3}{4}$	0.75	75%
	$\frac{1}{5}$	0.2	20%
	$\frac{2}{5}$	0.4	40%
	$\frac{3}{5}$	0.6	60%
	$\frac{5}{8}$	0.625	62.5%

These denominators are factors of ten so we can easily rename them.

$$\begin{array}{l} \frac{1}{2} = \frac{5}{10} \quad \frac{2}{5} = \frac{4}{10} \quad \frac{3}{5} = \frac{6}{10} \\ \frac{1}{4} = \frac{2}{8} \quad \frac{1}{2} = \frac{5}{10} \quad \frac{1}{5} = \frac{2}{10} \end{array}$$

These denominators are not factors of ten so we have to divide the numerator by the denominator.

$$\begin{array}{r} 0.25 \\ 4) 1.00 \\ - 8 \quad \downarrow \\ \hline 20 \quad \downarrow \\ - 20 \quad \downarrow \\ \hline 0 \end{array} \quad \begin{array}{r} 0.75 \\ 4) 3.00 \\ - 28 \quad \downarrow \\ \hline 20 \quad \downarrow \\ - 20 \quad \downarrow \\ \hline 0 \end{array} \quad \begin{array}{r} 0.625 \\ 8) 5.000 \\ - 48 \quad \downarrow \\ \hline 16 \quad \downarrow \\ - 16 \quad \downarrow \\ \hline 0 \end{array}$$

How much is $\frac{2}{3}$ of one dozen?

$$\frac{2}{3} \times 12 = 8$$

Estimate the product of 51 and 38 by rounding the numbers to the nearest ten before you multiply.

$$\begin{array}{r} 50 \times 40 = 2000 \\ 51 \times 38 = 1938 \end{array}$$

What is the product of $\frac{2}{3}$ and its reciprocal?

$$\frac{2}{3} \times \frac{3}{2} = \frac{6}{6} = 1$$

Convert these mixed numbers to decimals. Rename the fractional part with a denominator of ten or one hundred.

$$3\frac{1}{2} = 3.5$$

$$1\frac{1}{3} = 1.33$$

$$3\frac{0.33}{10} = 3.000$$

$$8\frac{0.375}{100} = 8.000$$

$$2\frac{3}{4} = 2.75$$

$$4\frac{1}{4} = 4.25$$

$$3\frac{1}{5} = 1.4$$

$$2\frac{3}{8} = 2.38$$

$$8\frac{3}{10} = 8.300$$

Fill in the missing factors or products to complete each number sentence.

$$5 \times \boxed{4} = 20$$

$$5A = 20 \quad A = \boxed{4}$$

$$7 \times \boxed{8} = 56$$

$$7B = 56 \quad B = \boxed{8}$$

$$8 \times \boxed{9} = 72$$

$$8C = 72 \quad C = \boxed{9}$$

$$6 \times \boxed{8} = 48$$

$$6X = 48 \quad X = \boxed{8}$$

$$8 \times \boxed{4} = 32$$

$$8Y = 32 \quad Y = \boxed{4}$$

$$7 \times \boxed{7} = 49$$

$$7Z = 49 \quad Z = \boxed{7}$$

$$6 \times \boxed{7} = 42$$

$$6T = 42 \quad T = \boxed{7}$$

Color the COEFFICIENTS red and the VARIABLES green in these number sentences.

No multiplication symbols are needed between the variable and the coefficient!

How many dimes are in \$4.00?

$$40$$

How many quarters are in \$4.00?

$$16$$

If 3 toothbrushes cost \$2.55, how much will 4 toothbrushes cost?

$$2.55/3 = \$0.85$$

$$0.85 \times 3 = \$3.40$$

You bought five movie tickets for \$14.35 each. How much did you spend?

$$14.35 \times 5 = \$71.75$$

How many years is five centuries?

$$500$$

If 1 pie is shared equally between 5 people, each person will get what fraction of the pie?

$$\frac{1}{5}$$

70

You are going to run a 13-mile relay race with three friends. If you divide the distance equally, how many miles (mixed number) will you each run?

$$\frac{13}{3} = 4\frac{1}{3}$$

$$13/3 = 4.33$$

Order these numbers from smallest to largest.

$$\begin{array}{cccc} 13.4 & 14.3 & 1.34 & 1.43 \\ \text{smallest} & & & \text{largest} \end{array}$$

$$\begin{array}{cccc} 2.71 & 7.12 & 1.27 & 1.72 \\ \text{smallest} & & & \text{largest} \end{array}$$

$$\begin{array}{cccc} 5.37 & 5.73 & 5.07 & 5.007 \\ \text{smallest} & & & \text{largest} \end{array}$$

$$\begin{array}{cccc} 5.007 & 5.07 & 5.37 & 5.73 \\ \text{smallest} & & & \text{largest} \end{array}$$

Compare these numbers ($<$, $>$, $=$)

$$1.251 < 12.51$$

$$8.244 < 8.245$$

$$23.417 < 23.471$$

$$7.191 > 7.119$$

$$5.215 < 52.15$$

$$2.684 < 26.84$$

FAMILY SUPER SUNDAES

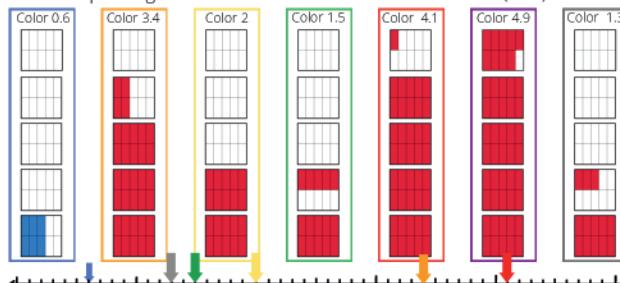

each scoop of ice cream	\$1.29
whipped cream	\$0.99
sauce [chocolate, caramel]	\$0.78
cookie	\$0.59
waffle cone	\$1.05
waffle bowl	\$1.99

Figure out the cost of your order: 3 scoops of ice cream in a waffle bowl, topped with whipped cream and chocolate sauce, with 2 cookies.

$$\begin{array}{r} 1.29 \ 0.59 \\ \times 3 \ \times 2 \\ \hline 3.87 \ 1.18 \end{array}$$

$$\begin{array}{r} 1.99 \\ 0.99 \\ 0.78 \\ 0.59 \\ +1.18 \\ \hline \$8.81 \end{array}$$

Color the decimal number in each colored rectangle. Then draw an arrow that color pointing to the number on the number line below. (4.35)

#37 Date _____

Draw a picture to help you solve each word problem.

Peter was 14-years-old, Edmund was 3 years younger than Peter and Lucy was two years younger than Edmund. If Susan was 4 years older than Lucy, how old was she?

$$13 \text{ years old}$$

20 pieces

The bench was 8 miles from the lamp post. It was one fourth of the way from the lamp post to Cair Paravel. What was the distance from the lamp post to Cair Paravel?

$$32 \text{ miles}$$

Playing hide-and seek, Lucy had to search 18 rooms. If Edmund shared the job equally with her, how many rooms did each of them search?

$$9 \text{ rooms}$$

The stone table was made of 125 stones in three colors: grey, brown and white. If there were 48 grey stones and 34 brown stones, how many white stones did the table contain?

$$43 \text{ white stones}$$

The door in the back of the wardrobe was 18 inches wide by 36 inches tall. What was its area?

$$648 \text{ square inches}$$

If each of the Pevensie children had two pairs of shoes in the wardrobe, how many individual shoe were there?

$$16 \text{ shoes}$$

One eighth of the 72 trees in the forest were not covered in snow. How many of the trees were covered in snow? What fraction of the trees were covered?

$$63 \text{ trees were covered, which is } \frac{8}{9} \text{ of the trees}$$

Use the menu prices to add up the cost of each meal. Find each customer's change if they pay with a \$20.00 bill. Line up the decimals! (4.39)

SANDWICH TRUCK	
Club	\$4.49
BLT	\$4.89
Ham	\$3.75
Cheese	\$4.75
Veggie	\$3.98
Fries	\$3.77
Soda	\$2.79
Ice cream	\$4.54

$$\begin{array}{r}
 4.89 \\
 3.77 \\
 \hline
 8.66
 \end{array}
 \begin{array}{r}
 20.00 \\
 11.45 \\
 \hline
 8.55
 \end{array}
 \begin{array}{l}
 \text{BLT, fries} \\
 \text{soda}
 \end{array}$$

$$\begin{array}{r}
 2.79 \\
 20.00 \\
 +4.49 \\
 \hline
 7.28
 \end{array}
 \begin{array}{l}
 \text{Soda, club} \\
 \text{sandwich}
 \end{array}$$

$$\begin{array}{r}
 2.79 \\
 20.00 \\
 -11.31 \\
 \hline
 8.69
 \end{array}
 \begin{array}{l}
 \text{Soda, veggie} \\
 \text{ice cream}
 \end{array}$$

$$\begin{array}{r}
 2.79 \\
 3.98 \\
 +4.54 \\
 \hline
 11.31
 \end{array}$$

Draw two horizontal line segments, parallel to each other. Draw two oblique line segments, parallel to each other, crossing both horizontal line segments. Color the bounded area. What shape did you draw? Name it two ways.

quadrilateral
parallelogram

Draw a pair of horizontal, parallel line segments. Make the lower segment longer. Connect the ends of the segments with oblique line segments, to make a shape. Name it two ways.

quadrilateral
trapezoid

73

A yard is 3 feet. A foot is 12 inches. How many inches is one fourth of a yard? What percent of 1 yd. is that?

9 in.; 25%

745

Add or subtract. Then convert both fractions to decimals and add or subtract.

$$\frac{12}{24} + \frac{1}{4} = \frac{3}{4} + 0.25 = 0.75$$

$$0.6 + 0.25 = 0.75$$

$$0.75 - 0.5 = 0.25$$

$$0.8 - 0.5 = 0.3$$

$$\frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

$$0.75 - 0.5 = 0.25$$

$$0.8 - 0.5 = 0.3$$

$$\frac{4}{5} - \frac{1}{2} = \frac{3}{10}$$

$$0.8 - 0.5 = 0.3$$

$$0.6 + 0.1 = 0.7$$

$$0.75 + 0.5 = 1.25$$

$$0.7 - 0.5 = 0.2$$

$$\frac{3}{4} + \frac{1}{2} = \frac{1}{4}$$

$$0.75 + 0.5 = 1.25$$

$$0.7 - 0.5 = 0.2$$

Find the products. Multiply straight across. Always simplify! Simplify BEFORE multiplying whenever you can.

$$\frac{3}{5} \times \frac{5}{8} = \frac{3}{8}$$

$$\frac{1}{2} \times \frac{2}{5} = \frac{1}{5}$$

$$\frac{1}{5} \times 4 = \frac{4}{5}$$

$$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$

$$\frac{2}{5} \times \frac{3}{4} = \frac{3}{10}$$

$$1 \times \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} \times \frac{4}{5} = \frac{2}{5}$$

$$\frac{3}{8} \times \frac{4}{5} = \frac{3}{10}$$

Find the quotients. Always simplify! Simplify BEFORE multiplying whenever you can.

$$\frac{3}{8} \div \frac{1}{4} = \frac{3}{2}$$

$$\text{How many times will } \frac{1}{4} \text{ go into } \frac{3}{8}?$$

$$6 \div \frac{1}{2} = 12$$

$$\frac{5}{6} \div 5 = \frac{1}{6}$$

$$1 \div \frac{1}{3} = 3$$

$$\frac{3}{4} \div 2 = \frac{3}{8}$$

#38 Date _____

Color the fraction circles. Convert each fraction to its decimal and percent.

Is the denominator a factor of 10 or 100?

No. Divide the numerator by the denominator.

Yes. Use the butterfly method to rename it.

$$\frac{1}{8} = \frac{1}{8} \quad \frac{1}{4} = \frac{25}{100}$$

$$\frac{3}{8} = \frac{375}{1000} \quad \frac{5}{8} = \frac{625}{1000}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac{3}{4} = \frac{75}{100}$$

$$\frac{3}{4} = \frac{75}{100} \quad \frac{7}{8} = \frac{875}{1000}$$

$$\frac{7}{8} = \frac{875}{1000} \quad \frac{1}{2} = \frac{50}{100}$$

$$\frac{5}{8} = \frac{625}{1000} \quad \frac$$

Choose three toys to buy. Write the amounts in dollar form and stack the prices, lining up the decimal points, to add them. How much change will you get if you pay with a \$20?

answers will vary

You rode your bike two miles in 15 minutes. It took your mom 20 minutes to ride the same distance. Who is faster?

you

Your friend skated 24 laps at the rink while you skated 21. Who skated faster?

your friend

Add or subtract. Then convert both fractions to decimals and add or subtract.

$\frac{13}{50} + \frac{15}{20} = \frac{7}{10} + \frac{0.2}{0.5} = 0.7$	$63 - \frac{15}{20} = \frac{1}{10} + 0.6 = 0.6$	$8\frac{4}{5} + \frac{15}{20} = \frac{13}{10} + 0.7 = 1.3$
$0.7 - 0.6 = 0.1$	$0.8 - 0.5 = 0.3$	

Find the correct operator (+, -, x, ÷) to make each number sentence true.

$\frac{3}{5} \times \frac{5}{8} = \frac{3}{8}$	$\frac{1}{3} \div \frac{2}{3} = \frac{1}{2}$	$\frac{1}{5} + \frac{1}{5} = \frac{2}{5}$	$\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$
$3 \div \frac{1}{2} = 6$	$3 \times \frac{1}{2} = 1\frac{1}{2}$	$3 \times \frac{1}{2} = 2\frac{1}{2}$	$3 + \frac{1}{2} = 3\frac{1}{2}$
$\frac{2}{3} - \frac{1}{4} = \frac{5}{12}$	$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$	$\frac{2}{3} \times \frac{1}{4} = \frac{1}{6}$	$\frac{2}{3} \div \frac{1}{4} = 2\frac{2}{3}$

Color the fraction circles. Convert each fraction to its decimal and percent. Round decimals to the hundredth place. Use whole number percentages.

Is the denominator a factor of 10 or 100?

No. Divide the numerator by the denominator.

Yes. Use the butterfly method to rename it.

Visual Fraction	Decimal	Percent
	0.3	30%
	0.2	20%
	0.4	40%
	0.6	60%
	0.8	80%
	1	100%
	0.33	33%

Use the provided function to complete the outputs in the y column.

$y = x/3$	$y = 2x$	$y = 2x-2$	$y = x^2$	$y = x/10$	$y = 5x-1$
x 3 6 9 12 15 18	y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	x 5 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102	x 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000	x 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000	x 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 1000

You can swim 20 meters in half a minute. Your sister can swim 50 meters in one minute. Who swims faster?

your sister

$40 \text{ m/1 min} < 50 \text{ m/1 min}$
you sister

You read 50 pages of your book in ten minutes. Your sister read 70 pages of the same book in twenty minutes. Who reads faster?

you

$100 \text{ pgs/20 min} > 70 \text{ pgs/20 min}$
you sister

79

#41 Date _____

30 minutes earlier 15 minutes earlier current time 15 minutes later 30 minutes later

2:00	2:15	2:30	2:45	3:00
2:50	3:05	3:20	3:35	3:50
11:45	12:00	12:15	12:30	12:45

How long is your movie?

Paddington Bear
Start: 7:10 PM
End: 8:20 PM

How long is your flight?

Departure 7:20 AM
Arrival 4:45 PM

How long is your field trip?

Admit One
Start: 9:05 AM
End: 3:55 PM

time	hours	minutes
7:10 PM	1	50
8:00 PM	4	40
12:00 PM	4	45
4:45 PM	8	45

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

2 hours and 5 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

9 hours and 25 minutes

Are there more than 60 minutes?
If so, TRADE 60 minutes for 1 hour.

6 hours and 50 minutes

Are there more than 60 minutes?
If so,

Add and subtract fractions and whole numbers. Draw pictures if it helps.

$$3\frac{12}{4} - \frac{3}{4} = 3\frac{9}{4} = 3\frac{2}{4} = 3\frac{1}{2}$$

$$\frac{3}{8} - \frac{1}{4} = \frac{1}{8}$$

$$\frac{1}{2} + \frac{5}{6} = \frac{1}{3}$$

$$2 - \frac{2}{5} = 1\frac{3}{5}$$

$$3 + \frac{1}{3} = 3\frac{1}{3}$$

$$1 - \frac{3}{4} = \frac{1}{4}$$

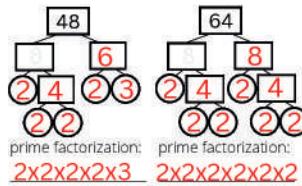
$$\frac{5}{9} - \frac{1}{3} = \frac{2}{9}$$

$$\frac{1}{2} + \frac{3}{5} = 1\frac{1}{10}$$

$$2 - \frac{2}{3} = 1\frac{1}{3}$$

$$1 + \frac{1}{4} = 1\frac{1}{4}$$

$$2 - \frac{4}{5} = 1\frac{1}{5}$$


$$\frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

List the factors of 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

List the factors of 64: 1, 2, 4, 8, 16, 32, 64

What is the Greatest Common Factor (GCF) of 48 and 64? _____

Factor the number in the top box of each factor tree.

Reduce this fraction to its simplest form two different ways.

$$\frac{48}{64} = \frac{48 \div 16}{64 \div 16} = \frac{3}{4}$$

Cancel common factors from the numerator and denominators.

$$\frac{2 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 2 \times 2 \times 2} = \frac{3}{4}$$

81

#43 Date _____

Measure each item in both in. and cm. Write amounts in fractions or decimals. Remember to start from zero on both sides of the ruler.

screwdriver length 8 1/4 in.

 21 cm.

length 1 in.

 2.7 cm.

length 9 1/8 in.

 23.3 cm.

Road trip! We have tons of snacks and we are driving from Minneapolis, Minnesota to Dallas, TX. They are in the same time zone. We are leaving at 9:30 a.m.. My maps app says it should take 11 hours and 41 minutes. What time should we arrive?

9:30 am to 9:30 pm would be 12 hours. 11 hours and 41 minutes is just 19 minutes less than 12 hours. Count 19 minutes backwards from 9:30 pm to 9:11 pm.

Note: the date of arrival is a day later than the date of departure. Disregard time zone changes.

How long is your play?		
Start	End	Time
6:30 PM		
7:00 PM	9:25 PM	2 hours and 55 minutes
9:00 PM		
9:25 PM		55 minutes

How long can you play?		
Start	End	Time
9:30 AM		
10:00 PM	1:55 PM	1 hour 25 min
10:00 PM		85 minutes
1:55 PM		

How long is your flight?		
Departure	Arrival	Time
10/2 6:50 PM	10/3 3:26 AM	
6:50 PM		
7:00 PM		10 hours
12:00 AM		5 hours
3:00 AM		3 hours
3:25 AM		35 minutes

Use the provided function to complete the outputs in the y column.

$$y = x^2 + 1$$

x	y
12	145
5	26
4	17
8	65
6	37
10	101

$$y = x/100$$

x	y
2	0.02
75	0.75
13	0.13
37	0.37
22	0.22
46	0.46

$$y = 3x - 2$$

x	y
12	34
5	13
6	16
9	25
7	19
4	27

$$y = 8x - 5$$

x	y
11	83
5	35
6	43
8	59
9	67
3	27

$$y = \sqrt{x}$$

x	y
25	5
16	4
81	9
9	3
36	6
5	25

$$y = 5x$$

x	y
1	5
8	40
12	60
9	45
4	20
5	25

83

#44 Date _____

Convert these US Customary units of length.

Convert these US Customary units of length.

2 ft = 24 in 3 ft = 36 in

54 ft = 18 yd 2 mi = 10560 ft

54 yd = 162 ft 3 yd = 108 in

12 in = 1 ft

3 ft = 1 yd

5280 ft = 1 mi

WORD PROBLEMS How many cm is $\frac{3}{4}$ of one meter? 75 cm

What is the sum of two and three tenths and three and five tenths?

$$2.3 + 3.5 = 5.8$$

Convert these metric length units.

kilometer hectometer decameter base unit decimeter centimeter millimeter

1000 m = 1 km 100 m = 1 hm 10 m = 1 dam meter 1 m = 10 dm 1 m = 100 cm 1 m = 1000 mm

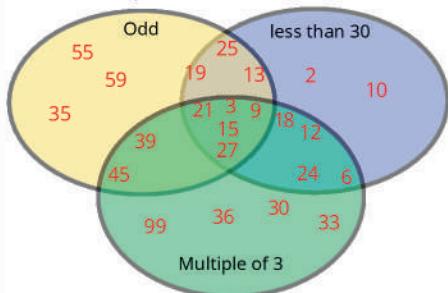
25 m = 25000 mm $25 \text{ m} \left(\frac{1000 \text{ mm}}{1 \text{ m}} \right) = 25000 \text{ mm}$ 2 m = _____ mm

800 cm = 8 m $800 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 8 \text{ m}$ 200 cm = _____ m

9.1 km = 9100 m $9.1 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) = 9100 \text{ m}$ 3 km = _____ m

12 m = 1200 cm $12 \text{ m} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right) = 1200 \text{ cm}$ 45 m = _____ cm

2 m = 2000 mm $2 \text{ m} \left(\frac{1000 \text{ mm}}{1 \text{ m}} \right) = 2000 \text{ mm}$ 16 m = _____ cm


19 km = 0.019 m $19 \text{ km} \left(\frac{1 \text{ m}}{1000 \text{ m}} \right) = 0.019 \text{ m}$ 5000 mm = _____ m

21 cm = 0.21 m $21 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 0.21 \text{ m}$ 100 cm = _____ m

14 m = 0.014 km $14 \text{ m} \left(\frac{1 \text{ km}}{1000 \text{ m}} \right) = 0.014 \text{ km}$ 1 m = _____ km

84

Find the correct space for each number in this Venn diagram. Cross out numbers as you use them. Circle any leftover numbers that don't have fit into the diagram. (3.30)

18 12
45 24
30 25
6 9
52 13
35 36
3 27
21 10
19 59
33 15
2 39
55 99

Tennis balls come in plastic tubes of 3 balls. Each box holds 12 plastic tubes. Each pallet holds 144 boxes. How many tennis balls are on each pallet?

36 balls per box
 $144 \times 36 = 5184$

If you bought 4 pounds of grapes for \$5.48, what was the cost per pound?

\$1.37

You paid \$20 for a movie ticket and got \$7.51 change. How much was your ticket?

$20 - 7.51 = \$12.49$

You bought popcorn and soda for \$3.37 each. How much money do you have now?

$3.37 \times 2 = 6.74$
 $12.49 - 6.74 = \$5.75$

85

Convert to the BASE UNIT (meter) and then to the desired unit. Multiply by one, TWICE, if needed.

kib	hecta	deca	base unit	deci	centi	milli
1000 m = 1 km	100 m = 1 hm	10 m = 1 dam	meter	1 m = 10 dm	1 m = 100 cm	1 m = 1000 mm

$9 \text{ m} = 900 \text{ cm}$ Two zeroes larger; move the decimal two places to the right.

$9 \text{ m} \left(\frac{100 \text{ cm}}{1 \text{ m}} \right) = 9 \times 100 \text{ cm} = 900 \text{ cm}$

Three zeroes larger; move the decimal three places to the right.

$2.02 \text{ km} = 2020 \text{ m}$ $2.02 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) =$

$0.173 \text{ km} = 17300 \text{ m}$ $0.173 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) =$ Five zeroes larger; move the decimal five places to the right.

Do you see the pattern?

Multiply by 10 for each box you move to the right; divide by 10 for each box you move to the left. Multiplying by 10 moves the decimal place one digit to the right. Dividing by 10 moves the decimal place one digit to the left.

To which decimal number does each arrow point? (5.34)

a <u>5.4</u>	c <u>11.1</u>	e <u>7.7</u>	g <u>0.3</u>	i <u>2.5</u>								
b <u>4.4</u>	d <u>7.4</u>	f <u>5.1</u>	h <u>11.9</u>	j <u>1.3</u>								
j	l	b	f	a	d	e	c	h				
0	1	2	3	4	5	6	7	8	9	10	11	12

The musical, *Les Misérables*, was a huge hit. The theater was filled all 7 nights. If 14,700 people attended total, how many attended each night?

2100 patrons per night

If each ticket was \$30, how much money did the production earn from ticket sales each night?

\$63000 per night

87

#45 Date _____

Convert these **US Customary** units to **Metric** units of length. 1 in = 2.54 cm

53 in = 1.35 m $53 \text{ in} \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = \frac{1.35}{100} \text{ m}$

$\frac{2.54}{100} \text{ m}$

$\frac{762}{100} \text{ cm}$

$\frac{134.62}{100} \text{ cm}$

divide by 100 1.35m

1 ft = 30.48 cm $1 \text{ ft} \left(\frac{12 \text{ in}}{1 \text{ ft}} \right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) =$

1 yd = 0.9144 m $1 \text{ yd} \left(\frac{3 \text{ ft}}{1 \text{ yd}} \right) \left(\frac{12 \text{ in}}{1 \text{ ft}} \right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) =$

convert to inches
5'1" = 154.94 cm $61 \text{ in} \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) =$

61 in $\left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) =$

A basketball player is 6' 9". How tall is he in meters?

First, how many total inches is 6 feet and 9 inches? $6 \text{ ft} = 72 \text{ in.}$

$83 \text{ in} \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) =$
add 9 in.
= 83 in.

$= 2.1082 \text{ m}$

Most African elephants weigh about 4 tons. How many pounds is that?

8000 pounds

128 oz = 1 gal

There are 64 people attending your family reunion. You are in charge of the picnic. You figure each person will want 2 glasses (12 oz. each) of lemonade. How many gallons of lemonade should you buy?

Need 24 oz. per person \times 64 people = 1536 oz

$1536 \text{ oz} \left(\frac{1 \text{ gal}}{128 \text{ oz}} \right) = 12 \text{ gallons}$

86

#46 Date _____

How much does each item weigh?

0.12 oz	2.12 oz	1.12 oz	2 lb 4 oz	2 lb 10 oz

What is the mass of each item?

2 kg 500 g	kg 100 g	1 kg 800 g	kg 900 g	5 kg 900 g

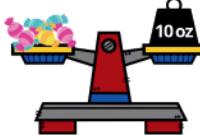
Convert these **US CUSTOMARY** units of weight.

2 lb = 32 oz $1.5 \text{ lb} = \frac{24}{16} \text{ oz}$

36 oz = 2 lb 4 oz $1.5 \text{ tons} = \frac{3000}{2000} \text{ lb}$

3 tons = 6000 lb $5000 \text{ lb} = \frac{2.5}{1000} \text{ ton (decimal)}$

2500 lb = 1 ton 500 lb $3 \text{ lb } 5 \text{ oz} = \frac{53}{16} \text{ oz}$


40 oz = 2.5 lb (decimal) $2 \text{ oz} = \frac{1}{8} \text{ lb (fraction)}$

16 oz = 1 lb
2000 lb = 1 ton
1000 g = 1 kg

88

Ten pieces of candy are on a scale, balanced by a 10 oz weight. What does each piece of candy weigh?

1 oz

Convert these **METRIC** units of mass.

kilo	hecta	deca	base unit	deci	centi	milli
1000g = 1kg	100g = 1hg	10g = 1dag	gram	1g = 10dg	1g = 100cg	1g = 1000mg

$$2 \text{ g} = 2000 \text{ mg} \quad 1500 \text{ mg} = 1.5 \text{ g} \text{ (decimal)}$$

$$2 \text{ g} = 0.002 \text{ kg} \quad 300 \text{ cg} = 3 \text{ g}$$

$$2.5 \text{ kg} = 2500 \text{ g} \quad 3500 \text{ g} = 3.5 \text{ kg} \text{ (decimal)}$$

Convert to the **BASE UNIT** (gram) and then to the desired unit.

$$0.19 \text{ kg} = 19000 \text{ mg} \quad 0.19 \text{ kg} \left(\frac{1000 \text{ g}}{1 \text{ kg}} \right) \left(\frac{100 \text{ mg}}{1 \text{ g}} \right) = 0.19 \times 100000 = 19000 \text{ mg}$$

$$1021 \text{ mg} = 0.001021 \text{ kg} \quad 1021 \text{ mg} \left(\frac{1 \text{ g}}{1000 \text{ mg}} \right) \left(\frac{1 \text{ kg}}{1000 \text{ g}} \right) = 1021 + 1000000 = 0.001021 \text{ kg}$$

$$0.25 \text{ dag} = 2500 \text{ mg} \quad 0.25 \text{ dag} \left(\frac{\text{g}}{\text{dag}} \right) \left(\frac{\text{mg}}{\text{g}} \right) =$$

Use comparison symbols ($<$, $>$, $=$) to compare these decimal numbers.

$$0.038 < 3.8 \quad 0.53 > 0.35 \quad 0.3 = 0.3$$

$$1.2 > 0.12 \quad 0.44 < 4.4 \quad 0.41 > 0.14$$

$$0.01 > 0.001 \quad 19 > 0.19 \quad 0.37 > 0.073$$

89

#47 Date _____

Convert these US Customary Units.

1 Tbsp = 3 spoons	2 gal = 8 qt	10 tsp = 3 Tbsp 1 tsp
3 tsp = 1 Tbsp	1 gal = 16 c	19 c = 1 gal 3 c
16 oz = 2 p	16 oz = 2 c	5 c = 1 qt 1 c
8 pt = 1 gal	8 pt = 1 gal	36 c = 2 gal 1 qt
1 qt = 4 c	1 qt = 4 c	160 oz = 1 gal 1 qt
2 Tbsp = 1 oz	2 Tbsp = 1 oz	12 oz = 1 c 2 Tbsp
2 Tbsp = 6 tsp	2 Tbsp = 6 tsp	6 qt = 1 gal 8 c

Convert to the **BASE UNIT** (liter) and then to the desired unit. (Multiply by one, TWICE, if needed)

$$1000 \text{ L} = 1 \text{ kL} \quad 100 \text{ L} = 1 \text{ hL} \quad 10 \text{ L} = 1 \text{ dL} \quad 1 \text{ L} = 10 \text{ dL} \quad 1 \text{ L} = 100 \text{ cL} \quad 1 \text{ L} = 1000 \text{ mL}$$

$$0.3 \text{ L} = 300 \text{ mL} \quad 0.13 \text{ kL} = 1300 \text{ dL} \quad 0.13 \text{ kL} \left(\frac{1000 \text{ L}}{1 \text{ kL}} \right) \left(\frac{10 \text{ dL}}{1 \text{ L}} \right) = 1300 \text{ dL}$$

$$7000 \text{ L} = 7 \text{ kL} \quad 500 \text{ cL} = 0.05 \text{ hL} \quad 500 \text{ cL} \left(\frac{1 \text{ L}}{100 \text{ cL}} \right) \left(\frac{1 \text{ hL}}{100 \text{ L}} \right) = 0.05 \text{ hL}$$

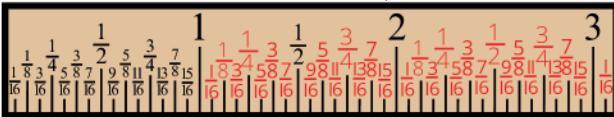
$$35 \text{ daL} = 350 \text{ L} \quad 0.01 \text{ kL} = 100 \text{ dL} \quad 0.01 \text{ kL} \left(\frac{1000 \text{ L}}{1 \text{ kL}} \right) \left(\frac{1 \text{ dL}}{1 \text{ L}} \right) = 100 \text{ dL}$$

$$1.5 \text{ kL} = 1500 \text{ L} \quad 9.7 \text{ daL} = 97000 \text{ mL} \quad 9.7 \text{ daL} \left(\frac{1000 \text{ L}}{1 \text{ kL}} \right) \left(\frac{1 \text{ mL}}{1 \text{ daL}} \right) = 97000 \text{ mL}$$

Can each container hold 1 L of liquid or more?

Circle the best estimate of the volume of each item.

YOGURT	MILK	JUG	DRUGSTORE	BATH
8L 8oz 8mL	1 qt 1oz 1tsp	1 L 1 gal 1 oz	1 L 1 ml 1 kL	200L 200mL 200kL


Use the number line to find each sum or difference. (3.58)

$$\begin{array}{ccccccc} & \leftarrow \text{negative} & & \text{positive} & \rightarrow + \\ \hline & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ 1 - 2.5 & = -1.5 & -1 + 1.1 & = 0.1 & -2 + 1.8 & = -0.2 \\ 3 - 2.5 & = 0.5 & 1 + 1.1 & = 2.1 & 2 - 1.8 & = 0.2 \\ 2.5 - 3 & = -0.5 & -1.3 - 0.3 & = -1.6 & -1 - 0.6 & = -1.6 \\ 1.5 - 1.7 & = -0.2 & -1.3 + 0.3 & = -1 & -1 + 0.6 & = -0.4 \end{array}$$

Find a common denominator, add the fractions then add the mixed numbers.

$$\begin{array}{ccccccc} 2\frac{1}{4} & 1\frac{1}{4} & 3\frac{2}{3} & 3\frac{3}{4} & 1\frac{7}{8} \\ + 1\frac{3}{8} & + 2\frac{1}{3} & + 3\frac{1}{6} & + 2\frac{1}{8} & + 2\frac{3}{8} \\ \hline 3\frac{5}{8} & 3\frac{7}{12} & 7\frac{1}{6} & 6\frac{1}{4} & 4\frac{5}{8} \end{array}$$

Label each vertical line on this ruler. Use the simplest form of each fraction.

Sometimes there is no direct conversion, so you have to use **TWO** conversion factors to reach the unit you need. Always reduce to the simplest form.

$$48 \text{ in} = 1\frac{1}{3} \text{ yd} \quad 48 \text{ in} \left(\frac{1 \text{ ft}}{12 \text{ in}} \right) \left(\frac{1 \text{ yd}}{3 \text{ ft}} \right) = \frac{48}{36} \text{ yd} = 1\frac{1}{3} \text{ yd}$$

$$2 \text{ yd} = 72 \text{ in} \quad 2 \text{ yd} \left(\frac{3 \text{ ft}}{1 \text{ yd}} \right) \left(\frac{12 \text{ in}}{1 \text{ ft}} \right) =$$

$$1 \text{ mi} = 1760 \text{ yd} \quad 1 \text{ mi} \left(\frac{5280 \text{ ft}}{1 \text{ mi}} \right) \left(\frac{1 \text{ yd}}{3 \text{ ft}} \right) =$$

#48 Date _____

Solve these problems.

$$|-6| = 6 \quad |6| = 6 \quad |-35| = 35 \quad |35| = 35$$

$$|2 - 7| = 5 \quad |-2 - 7| = 9 \quad |-7 + 2| = 5 \quad |2 + 7| = 9$$

$$|5 - 22| = 17 \quad 22 - |-5| = 17 \quad 5 - |-22| = -17 \quad |-5 - 22| = 27$$

Solve these problems. When the signs are **SAME** the result is positive. And when the signs are **DIFFERENT**, the result is negative.

$$-6 \times 8 = -48 \quad 6 \times (-8) = -48 \quad 48 \div (-8) = -6$$

$$3 \times (-9) = -27 \quad -3 \times (-9) = 27 \quad -27 \div 9 = -3$$

$$-8 \times (-7) = 56 \quad -8 \times 7 = -56 \quad -56 \div (-7) = 8$$

$$32 \div (-4) = -8 \quad -32 \div 4 = -8 \quad -32 \div (-4) = 8$$

Write an integer to represent each expression:

You dove fifteen feet below the ocean's surface. **-15**

You earned \$2300. **+2300**

It is 20 degrees below zero. **-20**

Move 15 units to the left of 3 on the number line. **3 - 15 = -12**

You made a profit of \$2500 on an investment. **+2500**

She received a five point deduction on figure skating. **-5**

Today is 17 degrees colder than yesterdays 5 degree temperature. **-17**

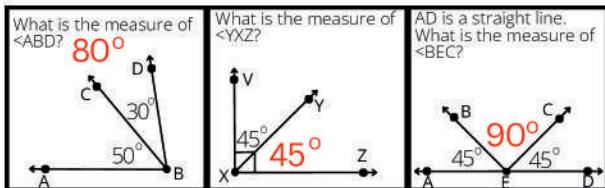
What do you call acetaminophen all by itself?

Use the number line and the clues to find the answer.

Plot these points on the number line:

A point at 3. Label it T

Two points that are 9 away from 3. Label both points E.


Two points that are 3 away from 3. Label both points Y.

Two points that are 15 away from 3. Label both points O.

Two points that are 12 away from 3. Label both points N.

Two points that are 18 away from 3. Label both points L.

Two points that are 6 away from 3. Label both points L.

Find a common denominator, then add and subtract the fractions. (5.27)

$$\begin{array}{llll} \frac{12}{24} - \frac{1}{4} = \frac{1}{4} & \frac{5}{6} - \frac{3}{12} = \frac{7}{12} & \frac{1}{3} + \frac{1}{4} = \frac{7}{12} & \frac{7}{8} - \frac{1}{2} = \frac{3}{8} \\ \frac{1}{2} + \frac{1}{3} = \frac{5}{6} & \frac{2}{2} - \frac{1}{3} = \frac{2}{3} & \frac{1}{3} - \frac{1}{12} = \frac{1}{4} & \frac{1}{4} + \frac{5}{8} = \frac{7}{8} \\ \frac{2}{3} - \frac{3}{6} = \frac{1}{6} & \frac{3}{4} - \frac{3}{6} = \frac{1}{4} & \frac{1}{2} + \frac{3}{6} = 1 & \frac{3}{4} - \frac{3}{12} = \frac{1}{2} \end{array}$$

#49 Date _____

Find the value of the exponents.

Two to the power of zero: $2^0 = 1$

$3^0 = 1$

Two to the power of one: $2^1 = 2$

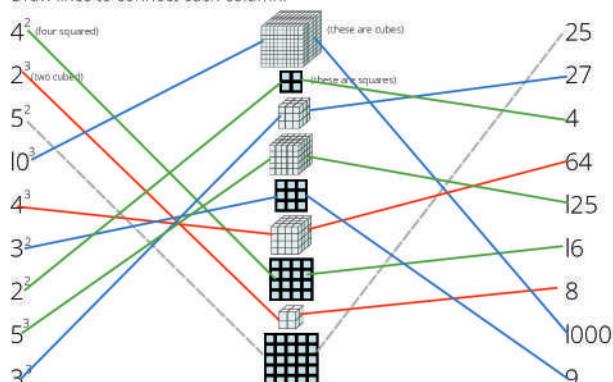
$3^1 = 3$

Two squared: $2^2 = 2 \times 2 = 4$

$3^2 = 3 \times 3 = 9$

Two cubed: $2^3 = 2 \times 2 \times 2 = 8$

$3^3 = 3 \times 3 \times 3 = 27$

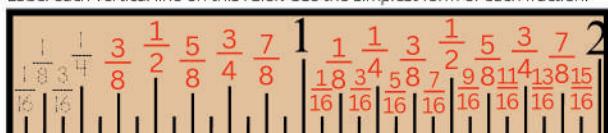

Two to the power of four: $2^4 = 2 \times 2 \times 2 \times 2 = 16$

$3^4 = 3 \times 3 \times 3 \times 3 = 81$

Two to the power of five: $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$

$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$

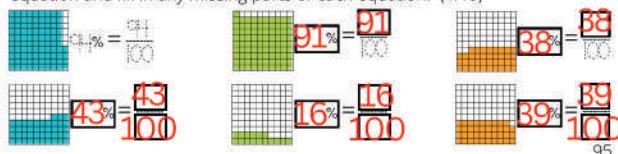
Draw lines to connect each column.


Find both square roots.

$$\begin{array}{llll} \sqrt{25} = 5 & \sqrt{9} = 3 & \sqrt{36} = 6 & \sqrt{16} = 4 \\ \sqrt{1} = 1 & \sqrt{100} = 10 & \sqrt{64} = 8 & \sqrt{81} = 9 \\ \sqrt{49} = 7 & & & \end{array}$$

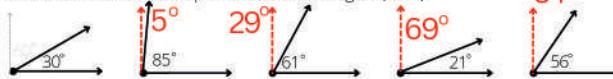
Solve these problems.

$$\begin{array}{llll} |-3 - 12| = 15 & |6 - 9| = 3 & |-4 - 6| = 10 & \\ 5 \times |-8| = 40 & 5 \times (-8) = -40 & 3 + |-15| = 18 & \\ |-7| \times 6 = 42 & -7 \times 6 = -42 & |-56| + 8 = 7 & \\ 7 \times (-8) = 56 & -7 \times 8 = -56 & -7 \times (-8) = 56 & \end{array}$$


Label each vertical line on this ruler. Use the simplest form of each fraction.

This grid has 100 squares. What percentage is each color? (4.40)

Each block has 100 squares. Color the squares to illustrate each percentage equation and fill in any missing parts of each equation. (4.40)



#50 Date _____

Solve using the Order of Operations (PEMDAS).

$$\begin{array}{llll} 5^2 - \sqrt{81} = 16 & |3 - 2 \times 5| = 7 & & \\ 9 - 12 + 4 = 6 & \sqrt{100} - 7(2 \times 4) = -46 & & \\ 2(5 + 1) \div (-2) = -6 & -8(5 + 1) + 12 = -4 & & \\ 2 + 3 \times 4 - 7 \times 2 = 0 & (2 + 14 \div 2) \div 3 = 3 & & \\ 8(6 \times 2) + \sqrt{36} = 16 & (8^2 - 6^2) \div 7 = 4 & & \\ 1 + 24 + 2^2 = 7 & -7 + 6 \times (-2) = -19 & & \end{array}$$

Draw and label the complement of each angle. (4.71)

Draw and label the supplement of each angle.

Write operators ($\times, +, +, -$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS. (3.83)

$$\begin{array}{llll} 8 \div 2 + 1 = 5 & 2 - 2 \times 1 = 0 & 5 - 1 + 3 = 7 & \\ - \times - - = & + + \times + = & - \times - + = & \\ 1 \times 3 - 2 = 1 & 5 \times 0 + 3 = 3 & 3 \times 4 \div 6 = 2 & \\ \times + + + = & - \times - - + = & \times - + + = & \\ 7 + 6 - 9 = 4 & 6 \div 3 - 7 = -5 & 2 \times 2 - 4 = 0 & \\ = = = = & = = = = & = = = = & \\ 1 - 1 + 8 = 8 & 1 \times 2 + -4 = 2 & 4 \times 2 + 1 = 9 & \end{array}$$

Each group contains two truths and a lie. Circle the LIE in each group. Follow the order of operations (PEMDAS).

$\text{elephant} = 8$	$\text{lion} = 5$	$\text{pig} = 9$	$\text{frog} = 7$
$\text{lion} - \text{pig} = 4$	$\text{lion} \times \text{pig} = 63$	$-5(\text{frog} - \text{pig}) = 10$	
$2 \times \text{elephant} = 16$	$\text{lion} + \text{pig} \times \text{frog} = 40$	$\text{lion} - \text{pig}^2 = -79$	
$\text{frog}^2 = 64$	$\text{elephant}(\text{lion} + \text{pig}) = 96$		

Complete this chart. Write fractions in their simplest form. Round decimals to the **hundredths place** and percents to the **whole number**.

Is the denominator a factor of 10 or 100?
No

Use the butterfly method
divide the numerator by the denominator

	1x10=10	1x100=100	4x25=100
$\frac{1}{2}$	1x5=5	1x25=25	4x10=40
$\frac{1}{4}$	1x25=25	4x100=400	4x25=100
$\frac{1}{5}$	1x2=2	4x5=20	4x25=100
$\frac{0.167}{6/1.000}$	$\frac{0.143}{7/1.000}$	$\frac{0.125}{8/1.000}$	$\frac{0.111}{9/1.000}$

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{2}$	0.5	50%
	$\frac{1}{3}$	0.33	33%
	$\frac{1}{4}$	0.25	25%
	$\frac{1}{5}$	0.2	20%
	$\frac{1}{6}$	0.17	17%
	$\frac{1}{7}$	0.14	14%
	$\frac{1}{8}$	0.13	13%
	$\frac{1}{9}$	0.11	11%
	$\frac{1}{10}$	0.1	10%

101

#54 Date _____

Find the products.

3.95	2.104	45.06	5.199	6.049
$\times 2.5$	$\times 1.78$	$\times 10.2$	$\times 4.7$	$\times 0.68$
1975	16832	9012	36393	48392
7900	147280	00000	207960	362940
4875	210400	450600	24.4353	4.11332

Three digits behind decimal point means parentheses
8(3 + 4) = 56 $\frac{1}{4}$, 25%

One quarter is what fraction of a dollar? What decimal? What percent?

What is seven eighths of forty-eight? 42

Order the numbers from smallest to largest.

15.2	12.5	1.25	1.52
<small>smallest</small>			<small>largest</small>
1.25	1.52	12.5	15.2
2.41	4.12	1.42	1.24
<small>smallest</small>			<small>largest</small>
1.24	1.42	2.41	4.12
35.06	56.03	36.05	56.3
<small>smallest</small>			<small>largest</small>
35.06	36.05	56.0	56.3

Compare these numbers (<, >, =)

13.15	<	13.51
6.022	<	6.202
24.812	<	24.813
88.08	<	8.808
7.199	>	7.119
5.215	<	52.15

Solve these problems.

$$|-3 - 7| = 10$$

$$|1 - 11| = 10$$

$$|5 - 6| = 1$$

$$9 \times |-8| = 72$$

$$|9 \times (-8)| = 72$$

$$-9 \times |-8| = -72$$

$$(-7)^2 = 49$$

$$-(7^2) = -49$$

$$|-42| \div 7 = 6$$

$$7 \times (-5) = -35$$

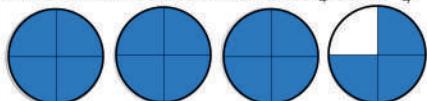
$$-5 \times 7 = -35$$

$$-42 \div 7 = -6$$

Compare these values using these operators (<, >, =).

$$|-11| < |-13|$$

$$|-45| < |46|$$


$$-15 = -|-15|$$

$$19 < |-29|$$

$$|32| < |-33|$$

$$-|28| < |-28|$$

Divide and shade circles to show that $3\frac{3}{4}$ equals $\frac{15}{4}$.

$$3\frac{3}{4} = \frac{15}{4}$$

Find the squares. (5.49)

$$2^2 = 4$$

$$6^2 = 36$$

Find both square roots.

$$\sqrt{16} = 4, -4$$

$$\sqrt{25} = 5, -5$$

$$3^2 = 9$$

$$7^2 = 49$$

$$\sqrt{81} = 9, -9$$

$$\sqrt{1} = 1, -1$$

$$4^2 = 16$$

$$8^2 = 64$$

$$\sqrt{36} = 6, -6$$

$$\sqrt{4} = 2, -2$$

$$5^2 = 25$$

$$9^2 = 81$$

$$\sqrt{64} = 8, -8$$

$$\sqrt{49} = 7, -7$$

#55 Date _____

When the divisor is a decimal, multiply both the dividend and the divisor by ONE (10/10 or 100/100) until the divisor is a whole number.

$$4.2 \div 0.6 = 7$$

$$6.4 \div 0.8 = 8$$

$$0.63 \div 0.07 = 9$$

$$4.2 \times \frac{10}{10} = 42$$

$$0.6 \times \frac{10}{10} = 6$$

$$0.48 \div 0.6 = 0.8$$

$$4.2 \div 6 = 7$$

$$7.2 \div 0.09 = 80$$

$$5.6 \div 0.8 = 7$$

$$0.9 \times \frac{100}{100} = 90$$

$$0.6 \times \frac{100}{100} = 60$$

$$0.3 \times 2.1 = 9$$

$$1.1 \times \frac{100}{100} = 110$$

$$0.5 \times \frac{100}{100} = 50$$

$$1.3 \times 5.2 = 4$$

$$0.12 \times \frac{100}{100} = 12$$

$$0.08 \times \frac{100}{100} = 8$$

$$0.07 \times 8.40 = 0.588$$

Three identical blocks are on a balanced scale with a 100 gram weight and a 500 gram weight on the other side. What does each block weigh?

200 g

What time is 43 minutes before midnight?

11:17 PM

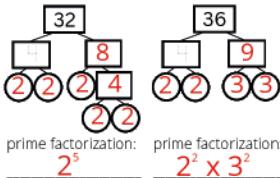
17 of the 20 questions on your test were correct. What percent is that?

85%

Five sixths of the dozen cartons of yogurt are strawberry. How many cartons of strawberry yogurt are there?

10

13/25, 0.52, 52%


104

List the **factors** of 32: 1, 2, 4, 8, 16, 32

List the **factors** of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36

What is the Greatest Common Factor (GCF) of 32 and 36? 4

Factor the number in the top box of each factor tree.

Reduce this fraction to its simplest form two different ways.

$$\frac{32}{36} \quad \frac{32 \div 4}{36 \div 4} = \frac{8}{9}$$

Cancel common factors from the numerator and denominators.

$$\frac{2 \times 2 \times 2 \times 2}{2 \times 2 \times 3 \times 3} = \frac{8}{9}$$

List the **factors** of:

10: 1, 2, 5, 10

12: 1, 2, 3, 4, 6, 12

15: 1, 3, 5, 15

18: 1, 2, 3, 6, 9, 18

20: 1, 2, 4, 5, 10, 20

24: 1, 2, 3, 4, 6, 8, 12, 24

Name the greatest common factor (GCF) of:

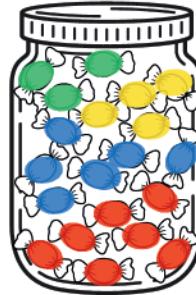
10 and 12 2 10 and 15 5

10 and 20 10 12 and 15 3

12 and 18 6 12 and 20 4

15 and 18 3 15 and 24 3

18 and 24 6 20 and 24 4


Simplify these fractions. Divide numerator and denominator by their GCF.

$$\begin{array}{rcl} \frac{10}{12} = \frac{5}{6} & \frac{10}{15} = \frac{2}{3} & \frac{10}{20} = \frac{1}{2} \\ \frac{12}{12} = \frac{6}{6} & \frac{15}{15} = \frac{3}{3} & \frac{20}{20} = \frac{10}{10} \end{array} \quad \begin{array}{rcl} \frac{12}{15} = \frac{4}{5} & \frac{15}{18} = \frac{5}{6} & \frac{15}{24} = \frac{5}{8} \\ \frac{18}{24} = \frac{3}{4} & \frac{24}{24} = \frac{3}{3} & \frac{20}{24} = \frac{5}{6} \end{array}$$

#56 Date _____

Color the candies in this jar so that:

- 35% of the candies are red
- 30% of the candies are blue
- 20% of the candies are yellow
- 15% of the candies are green

What **fraction** of the candies are:

red 7/20 blue 6/20
yellow 4/20 green 3/20

	fraction	rename fraction	percent
red	$\frac{6}{25}$	$\frac{24}{100}$	24%
purple	$\frac{4}{25}$	$\frac{16}{100}$	16%
green	$\frac{8}{25}$	$\frac{32}{100}$	32%
yellow	$\frac{7}{25}$	$\frac{28}{100}$	28%

What is the ratio of red gumdrops to green gumdrops? 6/8 or 3/4

There are 50 beads on the bracelet. 46% of them are yellow. How many are yellow? 23

24% of the beads are pink. How many are pink? 12

The rest of the beads are green. What percentage are green? 30%

What fraction (simplest form) of the bracelet is each color:

yellow $\frac{23}{50}$ pink $\frac{12}{50}$ green $\frac{15}{50}$

Find the products.

$$\begin{array}{rcl} 15.015 & 9.112 & 24.32 \\ \times 12.3 & \times 14.6 & \times 15.7 \\ \hline 183.0352 & 381.824 & 381.824 \end{array} \quad \begin{array}{rcl} 11.04 & 34.45 & \\ \times 1.97 & \times 8.54 & \\ \hline 21.7488 & 294.2030 & \end{array}$$

$$\begin{array}{rcl} 21.35 & 18.09 & 14.18 \\ \times 6.49 & \times 3.9 & \times 5.13 \\ \hline 138.5615 & 70.551 & 72.7434 \end{array} \quad \begin{array}{rcl} 32.75 & 15.99 & \\ \times 9.01 & \times 2.57 & \\ \hline 295.0775 & 41.0943 & \end{array}$$

Use the menu prices to add up the cost of each meal. Find each customer's change if they pay with a \$10.00 bill. Line up the decimals! (4.39)

3.49	4.98	10.00	8.47	1.53
4.98	8.47			
8.47				

$$\begin{array}{rcl} 3.97 & \text{Smoothie brownie cookie} & \\ 2.59 & 10.00 & \\ +2.47 & -9.03 & \\ \hline \$9.03 & \$0.97 & \end{array}$$

#57 Date _____

Calculate:

10% of 60 = 6 10% of 80 = 8

20% of 60 = 12 20% of 80 = 16

50% of 60 = 30 50% of 80 = 40

25% of 60 = 15 25% of 80 = 20

75% of 60 = 45 75% of 80 = 60

Calculate:

10% of 50 = 5 10% of 90 = 9

5% of 50 = 2 1/2 5% of 90 = 4 1/2

15% of 50 = 7 1/2 15% of 90 = 13 1/2

20% of 50 = 10 20% of 90 = 18

25% of 50 = 12 1/2 25% of 90 = 22 1/2

Calculate:

$10\% + 5\% + 1\% + 1\% + 1\% = 18\%$ 18% of 40 = 7.2 25% of 36 = 9

4% of 50 = 2 50% of 48 = 24

30% of 70 = 21 16% of 50 = 8

5% of 20 = 1 99% of 200 = 198

95% of 140 = 133 72% of 175 = 126

	fraction	rename fraction	percent
pink	8/20	40/100	40%
green	7/20	35/100	35%
orange	5/20	25/100	25%

What is the ratio of green beads to orange beads?

7/5

You earned 80% on a test with 50 questions. How many questions did you answer correctly?

40

Three fifths of the 100 passengers on the plane chose a chicken meal. The rest of them chose beef. How many of them chose beef?

40

Write fractions equal to $\frac{1}{2}$ and $\frac{3}{4}$ and subtract the smaller fraction from the larger fraction.

$$\frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

Solve. When multiplying, if the signs are the SAME the result is positive. And when the signs are DIFFERENT, the result is negative. Remember PEMDAS.

$$-7 \times 8 = -56$$

absolute value

$$|2 - 17| = 15$$

$$18 \div (-3) = -6$$

$$3 \times |-9| = 27$$

absolute value

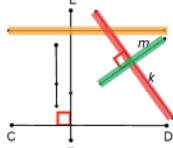
$$1 + (-3 \times 7) = -20$$

$$-10 + |-3 \times 4| = 2$$

$$-6(2 \times 4) = -48$$

$$6^2 + (-9) \times 4 = 0$$

$$|-56 \div 7| + (-8) = 0$$


$$-72 \div |-9| = -8$$

$$(-5 + 3) \div -1 = 2$$

$$|5^2 - 6^2| = 9$$

109

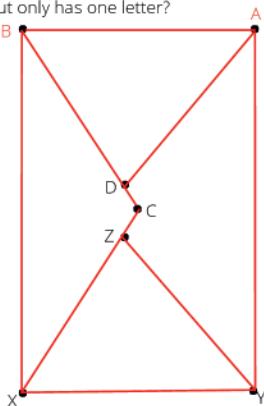
#58 Date _____

1. Trace the horizontal line orange.
2. Which line segment is parallel to the ray? **EF**
3. Name the two perpendicular line segments: **CD** and **EF**
4. Trace one oblique line red and one green.
5. Name the two perpendicular lines: **m** and **k**

What angle do clock hands pointing to 9:00 make?

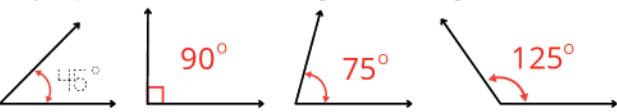
90 degrees

Draw two parallel line segments.


Draw four line segments the same length at right angles to each other. What shape did you draw?

square

What word begins with E and ends with E, but only has one letter?


- Start at point X.
- Draw a line segment \overline{XY} .
- From point Y, draw a 5" vertical line perpendicular to \overline{XY} .
- Label that point A.
- Draw a line segment parallel to and the same length as \overline{XY} from point A directly west.
- Label that point B.
- Draw line segment \overline{BC} .
- Draw line segment \overline{CX} .
- Draw line segment \overline{XB} .
- Draw an oblique line segment from point D to point A.
- Draw another oblique line segment from point Z to point Y.

110

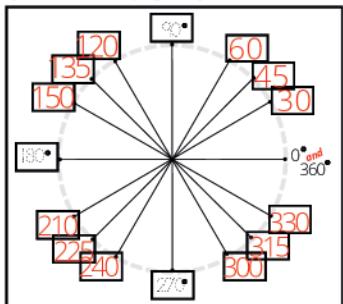
#59 Date _____

Use your protractor to measure each angle. Use units (degree).

COMPLEMENTARY angles add up to 90 degrees.

SUPPLEMENTARY angles add up to 180 degrees.

Draw:
Right Angle (include the small square)


Acute Angle

Obtuse Angle

Straight Angle

Reflex Angle

Fill in the boxes around this circle with the correct angle measurements. Use your reference pages if you need to.

112

If the perimeter of a square is 5 feet, how many inches long is each side?

15"

This pallet of boxes is stacked in a warehouse. Boxes are only removed from the top. How many boxes are left on the pallet?

44 boxes

How many seconds are in 1 hour?

3600
seconds/hour

You made 5 dozen cookies. How many cookies is that?

60

You want to keep one dozen cookies and share the rest equally among your six best friends. How many cookies will you give each friend?

8

Draw a HORIZONTAL line and a VERTICAL line to divide this square into FOURTHS.

Use two OBLIQUE lines to divide this square into FOURTHS.

Draw 3 HORIZONTAL lines to divide this square into FOURTHS.

Draw 3 VERTICAL lines to divide this square into FOURTHS.

Solve. When multiplying, if the signs are the SAME the result is positive. And when the signs are DIFFERENT, the result is negative. Remember PEMDAS.

$$|-6 \times 8| = 48$$

$$5^2 - 2(3 \times 4) = 1$$

$$-24 \div 6 = -4$$

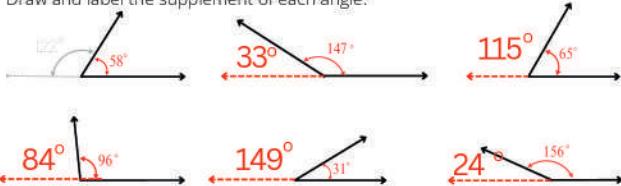
$$-8 \times (3 + 4) = -56$$

$$-8 \times 3 + 4 = -20$$

$$|-8| \times 3 + 4 = 28$$

$$-|12 - 3 \times 5| = -3$$

$$(-9)^2 - 7^2 = 32$$


$$-3 + (-9) = -12$$

111

Draw and label the complement of each angle.

Draw and label the supplement of each angle.

Complete this chart. Round decimals to the hundredths place and just use whole number percents. (5.33)

Is the denominator a factor of 10 or 100?
Yes use the butterfly method. No divide the numerator by the denominator.

9/1.000	0.222	0.22	22%
9/2.000	0.333	0.33	33%
9/3.000			
9/5.000	0.555	0.56	56%
9/7.000	0.777	0.78	78%
9/8.000	0.888	0.89	89%

Visual Fraction	Numerical Fraction	Decimal	Percent
	$\frac{1}{4}$	0.25	25%
	$\frac{2}{9}$	0.22	22%
	$\frac{1}{3}$	0.33	33%
	$\frac{5}{9}$	0.56	56%
	$\frac{7}{9}$	0.78	78%
	$\frac{8}{9}$	0.89	89%
	1	1	100%

113

#60 Date _____

Measure a side of each REGULAR polygon with a ruler to find each side length in inches. Use units!

name: triangle

number of sides: 3

side length: 15 in.

perimeter: 45 in.

name: square

number of sides: 4

side length: 1 in.

perimeter: 4 in.

name: pentagon

number of sides: 5

side length: $\frac{3}{4}$ in.

perimeter: $3\frac{3}{4}$ in.

name: hexagon

number of sides: 6

side length: $\frac{3}{4}$ in.

perimeter: $4\frac{1}{2}$ in.

name: heptagon

number of sides: 7

side length: $\frac{1}{2}$ in.

perimeter: $3\frac{1}{2}$ in.

name: octagon

number of sides: 8

side length: $\frac{1}{2}$ in.

perimeter: 4 in.

Write each quadrilateral term twice.

trapezoid

square

parallelogram

rectangle

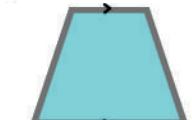
rhombus

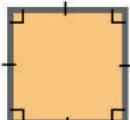
Match each term to its properties.

Has two pairs of parallel sides, right angles and congruent sides.

Has two pairs parallel sides, and four right angles.

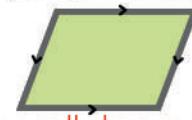
Has only one pair of parallel sides.

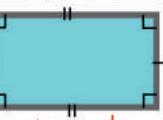

A parallelogram with four congruent sides, but it does not have to have 4 right angles.

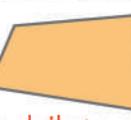

Has 2 pairs of parallel sides, opposite each other.

114

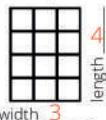
Use the flow chart from your reference pages to identify each type of quadrilateral.


trapezoid

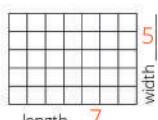

square


rhombus

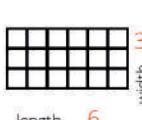
parallelogram

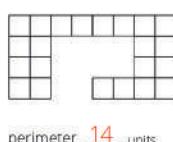


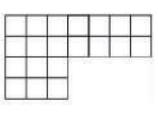
rectangle

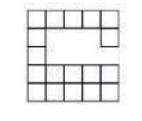


quadrilateral

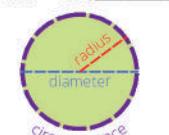

Find the perimeter and area of each rectilinear shape.


width 3 units
length 4 units
perimeter 14 units
area 12 units² what's why?


length 7 units
width 5 units
perimeter 24 units
area 35 units²

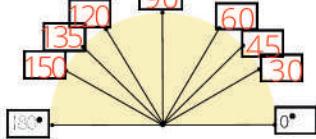

length 6 units
width 3 units
perimeter 18 units
area 18 units²

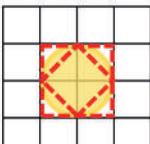
perimeter 14 units
area 12 units²

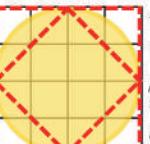


perimeter 22 units
area 20 units²

perimeter 30 units
area 18 units²


#61 Date _____

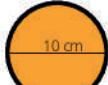

area = πr^2 $r = \text{radius}$
circumference = $2\pi r$


Fill in each angle measure.

Use the grid to estimate the area of each shape. Each square on the grid is one unit squared. Draw and label the radius, diameter and circumference.

The small square is 2 square units.
The big square is 4 square units.
A good estimate will be between the upper and lower estimates.

The small square is 8 square units.
The big square is 16 square units.
A good estimate is 12 square units, midway between the upper and lower estimates.


estimate: 3 units²
calculate: 3.14 sq. units

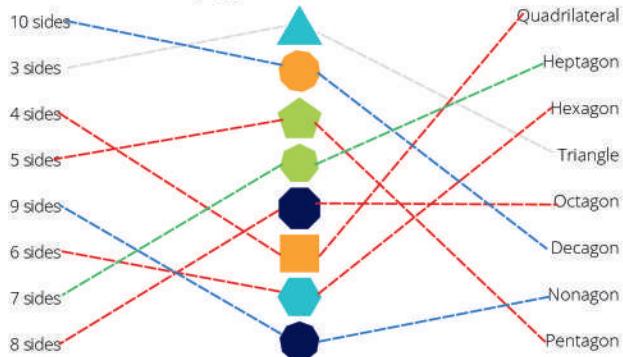
area = $\pi r^2 = \pi \times (1)^2$

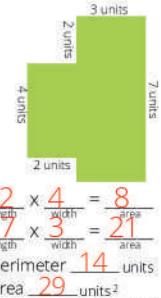
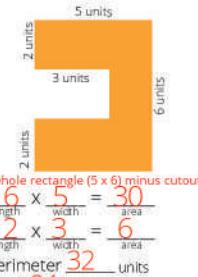
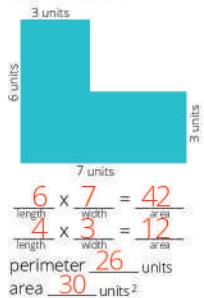
estimate: 10 units²
calculate: 12.56 sq. units

area = $\pi r^2 = \pi \times (2)^2$

Find the dimensions of each circle based on the given dimension. (not to scale)

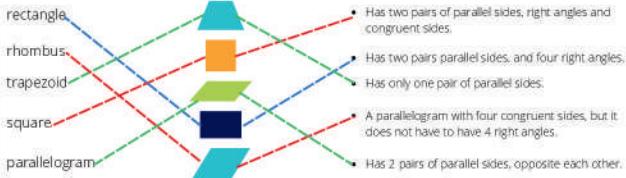
radius 5 cm
diameter 10 cm
circumference 31.4 cm
area 78.5 sq. cm


radius 2 ft
diameter 4 ft
circumference 12.56 ft
area 12.56 sq. ft




radius 50 cm
diameter 100 cm
circumference 314 cm
area 7850 sq. cm

116

Draw lines to match the polygons across all three columns.



Find the missing dimensions, then divide each shape into two or three rectangles. Find the perimeter and the area of each small rectangle, then add up those areas to find the area of the WHOLE shape. All of the angles are RIGHT ANGLES.

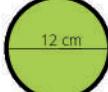
117

Draw lines to match each quadrilateral across all three columns.

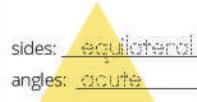
What is eight times the quantity of four and three? **56**

What is half of eight increased by the square root of forty-nine? **11**

Use a ruler to draw a rectangle with a length of 10cm and a width half the length. Find the perimeter and area of the rectangle.


Find the dimensions of each circle based on the given dimension. (not to scale)

radius 5 cm
diameter 10 cm
circumference 31.4 cm
area 78.5 sq. cm


radius 2 ft
diameter 4 ft
circumference 12.56 cm
area 12.56 cm²

radius 6 cm
diameter 12 cm
circumference 37.68 cm
area 113.04 sq. cm

#63 Date _____

Use your ruler and protractor to classify each triangle by its sides and angles.

sides: equilateral
angles: acute

sides: isosceles
angles: right

sides: scalene
angles: obtuse

sides: scalene
angles: right

sides: scalene
angles: obtuse

sides: scalene
angles: right

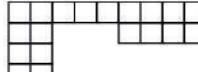
Find the area and perimeter of each shape.

3 rows, 4 columns

$$3 \times 4 = 12$$

perimeter 14 units

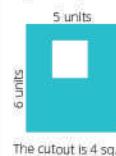
area 12 sq. units



4 rows, 3 columns

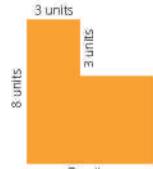
$$4 \times 3 = 12$$

perimeter 14 units


area 12 sq. units

perimeter 48 units

area 34 sq. units


Find the perimeter and area of each rectilinear shape: Assume all angles are right angles.

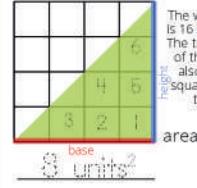
The cutout is 4 sq. units.

perimeter 26 units

area 26 units²

perimeter 30 units

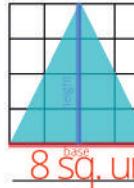
area 54 units²



perimeter 40 units

area 36 units²

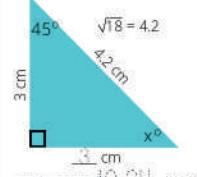
#64 Date _____


Use the grid to estimate the area of each shape. Each square on the grid is one unit squared.

The whole square is 16 square units. The triangle is half of that. You can also count the squares and add them up.

$$\text{area} = \frac{1}{2} (4)(4)$$

base 3 units 2 height

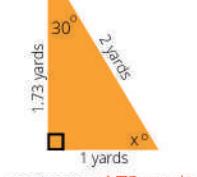


$$\text{area} = \frac{1}{2} \text{bh}$$

b (base) and h (height) must be perpendicular to each other

8 sq. units

Find and label the missing angle and sides. Find the area and perimeter, then classify each triangle by its sides and angles.

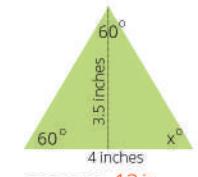


perimeter 10.24 cm

area 4.5 cm

$$3 + 3 + 4.2 = 10.24$$

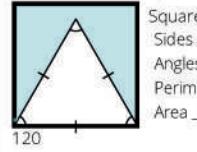
$$\frac{1}{2}(3)(3) = \frac{9}{2} = 4.5$$



perimeter 4.73 yards

area 0.865 sq. yards

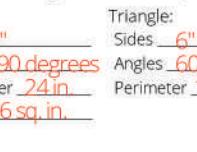
$$1.73 + 1.73 + 2 = 4.73$$


$$\frac{1}{2}(1.73)(1.73) = \frac{2.99}{2} = 0.865$$

perimeter 12 in.

area 7 sq. in.

The sides of the equilateral triangle are 6 inches. (not to scale)

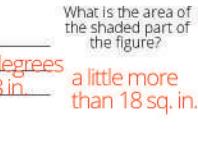

Square: _____

Sides 6"

Angles 90 degrees

Perimeter 24 in.

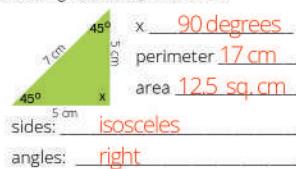
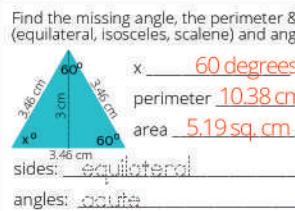
Area 36 sq. in.


Triangle: _____

Sides 6"

Angles 60 degrees

Perimeter 18 in.



Area 36 sq. in.

What is the area of the shaded part of the figure?

a little more than 18 sq. in.

119

Find the quotients.

115.5 $8 \overline{) 924.0}$	111.6 $7 \overline{) 781.2}$	114.5 $12 \overline{) 1374.0}$	24.2 $15 \overline{) 363.0}$	89.3 $9 \overline{) 803.7}$
<u>11</u> <u>8</u> <u>12</u> <u>-8</u> <u>44</u> <u>-40</u> <u>40</u> <u>-40</u>	<u>14</u> <u>7</u> <u>08</u> <u>7</u> <u>-12</u> <u>54</u> <u>-48</u> <u>60</u> <u>-60</u>	<u>12</u> <u>17</u> <u>-12</u> <u>54</u> <u>-48</u> <u>30</u> <u>-30</u> <u>0</u>	<u>30</u> <u>63</u> <u>-60</u> <u>30</u> <u>-30</u> <u>0</u>	<u>72</u> <u>83</u> <u>-81</u> <u>27</u> <u>0</u>
<u>14</u> <u>7</u> <u>08</u> <u>7</u> <u>-12</u> <u>54</u> <u>-48</u> <u>60</u> <u>-60</u>	<u>12</u> <u>17</u> <u>-12</u> <u>54</u> <u>-48</u> <u>30</u> <u>-30</u> <u>0</u>	<u>30</u> <u>63</u> <u>-60</u> <u>30</u> <u>-30</u> <u>0</u>	<u>72</u> <u>83</u> <u>-81</u> <u>27</u> <u>0</u>	
<u>12</u> <u>17</u> <u>-12</u> <u>54</u> <u>-48</u> <u>30</u> <u>-30</u> <u>0</u>	<u>30</u> <u>63</u> <u>-60</u> <u>30</u> <u>-30</u> <u>0</u>	<u>72</u> <u>83</u> <u>-81</u> <u>27</u> <u>0</u>		
<u>30</u> <u>63</u> <u>-60</u> <u>30</u> <u>-30</u> <u>0</u>	<u>72</u> <u>83</u> <u>-81</u> <u>27</u> <u>0</u>			
<u>72</u> <u>83</u> <u>-81</u> <u>27</u> <u>0</u>				

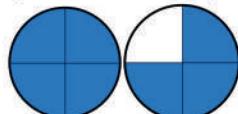
You have three piles of books, with 7, 9 and 5 books respectively. If you redistribute the books so each pile has equal amounts, how many books will be in each pile?

7

The bottom layer has nine cubes. How many cubes are in this stack?

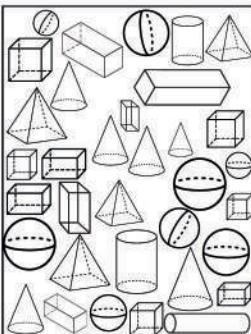
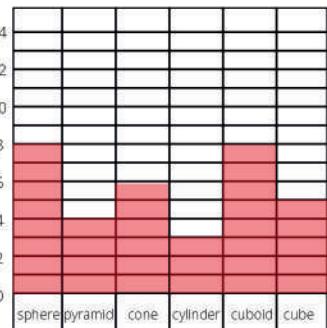
19

If you take a \$10 bill to the store, how many eggs can you buy?


15

How much money will you have left over?

25 cents

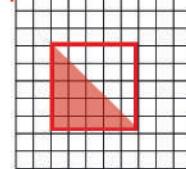
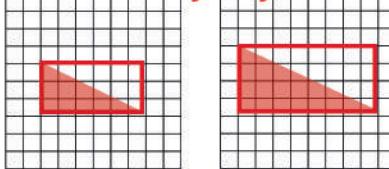


Draw a picture to show that the mixed number one and one fourth and the top-heavy fraction, five fourths are equivalent.

121

#65 Date _____

Color one space for each 3D shape to make a bar graph of shapes.

How many cents is $\frac{1}{4}$ of a dollar? What percent of a dollar is that?



25 cents; 25%

How many cents is $\frac{1}{2}$ of a dollar? What percent of a dollar is that?

50 cents; 50%

Draw rectangles with the following areas:

answers may vary; these are possibilities

Now draw a diagonal line across each rectangle, dividing it into TWO triangles. Color one of them. What is the area of each triangle?

9 units²

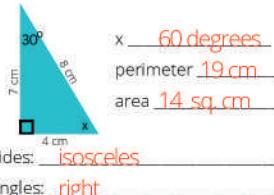
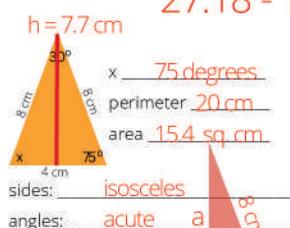
16 units²

12.5 units²

122

A cheese pizza costs \$9.95 plus \$0.45 per topping. If your pizza was \$11.75, how many toppings did you get?

4



The total price of 5 pounds of cheese was \$28.75. What was the price per pound?

\$5.75

What is the difference when you subtract nineteen and five tenths from twenty-seven and eight hundredths?

$$27.18 - 19.5 = 7.68$$

$a^2 + b^2 = c^2$
 $a^2 + 2^2 = 8^2$

Balance these equations:

$$6 \times 6 = 9 \times 4$$

$$8 + 4 = 4 \times 3$$

$$9 \times 8 = 12 \times 6$$

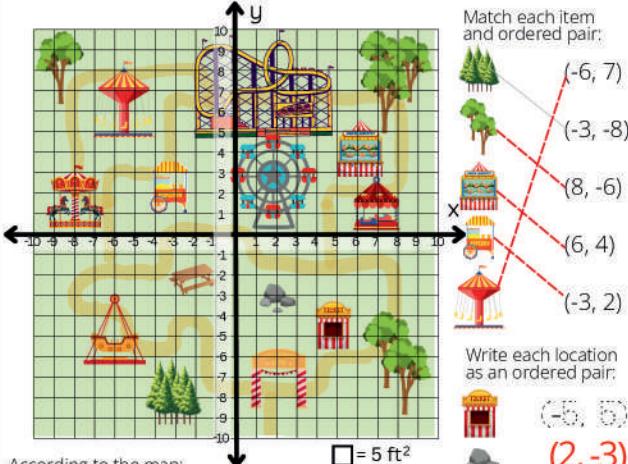
$$2 + 3 = 40 + 8$$

$$8^2 - 2^2 = 10 \times 6$$

$$4 \times 3 = 6^2 + 3$$

$$5^2 = 35 - 10$$

$$2 + 6 \times 8 = 10^2 + 2$$

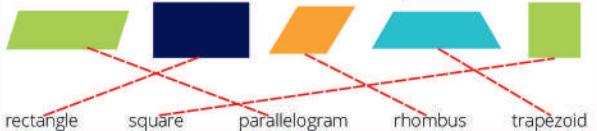

$$54 + 9 = \sqrt{36}$$

$$3 \times 6 = 4^2 + 2$$

$$8 \times 11 = 9^2 + 7$$

$$123$$

#66 Date _____


According to the map:

How tall is the Ferris wheel? **about 25'**

What is the length of the roller coaster in the x direction? **about 35'**

How far is the tidal wave boat from the ticket booth? **about 40'**

Draw lines to match each quadrilateral to its most specific name.

124

Solve using the Order of Operations (PEMDAS).

$$3^2 - \sqrt{4} = 7$$

$$18 \div \sqrt{36} = 3$$

$$8(-5 - 1) \div 12 = -4$$

$$5 + 3 - 4^2 = -8$$

$$12 + -6 \times 2 = 0$$

$$6^2 + 4 = 9$$

$$3 - 54 + 9 = -3$$

$$-9 + 3 \times 6 = 9$$

$$5^2 - \sqrt{81} = 16$$

$$7(2 \times 4) = 56$$

One fifth of the 30 students earned an A on the test. One half of the students who earned an A on the test were girls.

1. How many students earned an A on the test? 6

2. How many girls earned an A on the test? 3

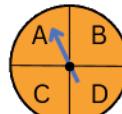
3. What is the ratio of girls who earned an A to total students?

3/30 or 1/10

The operators are missing! Insert the correct operator (+, -, x, ÷) in each yellow circle to make the number sentence true. All answers have been simplified.

$$\frac{2}{3} \times \frac{1}{4} = \frac{2}{12} \quad \frac{1}{4} \times \frac{3}{4} = \frac{3}{16} \quad \frac{2}{3} - \frac{1}{4} = \frac{5}{12} \quad \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$\frac{1}{2} \times \frac{2}{5} = \frac{2}{10} \quad \frac{1}{6} \div \frac{1}{3} = \frac{1}{2} \quad \frac{1}{2} \times \frac{1}{4} = \frac{3}{8} \quad \frac{1}{4} \div \frac{3}{4} = \frac{1}{3}$$


Find a common denominator, then add and subtract the fractions. Simplify.

$$\frac{2}{3} - \frac{1}{2} = \frac{1}{6} \quad \frac{5}{8} - \frac{14}{28} = \frac{1}{8} \quad \frac{2}{3} - \frac{5}{12} = \frac{1}{4} \quad \frac{1}{2} + \frac{2}{3} = \frac{7}{6} = 1\frac{1}{6}$$

$$\frac{1}{2} + \frac{5}{6} = 1\frac{1}{3} \quad \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \quad \frac{1}{3} + \frac{1}{4} = \frac{7}{12} \quad \frac{5}{6} - \frac{5}{12} = \frac{5}{12}$$

$$\frac{3}{4} - \frac{7}{12} = \frac{5}{12} \quad \frac{3}{4} - \frac{3}{8} = \frac{3}{8} \quad \frac{7}{8} - \frac{1}{4} = \frac{5}{8} \quad \frac{1}{4} + \frac{5}{8} = \frac{7}{8}$$

#68 Date _____

The circle is divided into 4 equal parts. If you spin the arrow, what is the probability (fraction) that it will stop on a vowel? What is the chance (percentage)?

$$\text{probability} = \frac{\# \text{ of vowels}}{\# \text{ of sections}} \quad \text{chance} = \frac{\text{com. fraction}}{100\%}$$

What are the probability and chance the arrow will land on a consonant?

3/4 75%

What is the probability of rolling an even number on a die? What is the chance?

$$\text{probability} = \frac{\# \text{ of even}}{\# \text{ of sides}} \quad \text{chance} = 50\%$$

6 sides of a die:

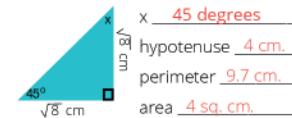
remember to simplify!

What fraction names the probability that the spinner will stop in:

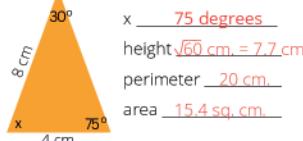
The section labeled 1. 1/2

A section with an even number. 1/4

A section with an odd number. 3/4

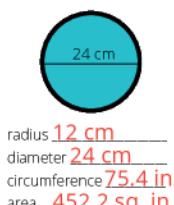
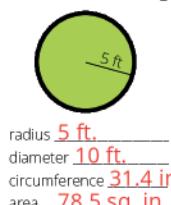
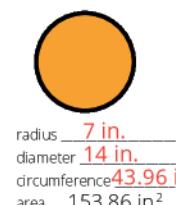

1

2


3

Find the missing angle, the perimeter & area, then classify each triangle by sides and angles. Use a calculator to find roots and don't forget the units.

Classification:
sides isosceles
angles right

sides isosceles
angles acute

Find the quotients.

$$\begin{array}{r} 235 \\ 11 \overline{)2585} \\ \underline{22} \\ 35 \\ \underline{33} \\ 2 \end{array} \quad \begin{array}{r} 158 \\ 9 \overline{)1422} \\ \underline{9} \\ 52 \\ \underline{45} \\ 72 \\ \underline{0} \end{array} \quad \begin{array}{r} 84.5 \\ 17 \overline{)14365} \\ \underline{14} \\ 68 \\ \underline{65} \\ 30 \\ \underline{30} \\ 0 \end{array} \quad \begin{array}{r} 101.2 \\ 15 \overline{)1518.0} \\ \underline{15} \\ 18 \\ \underline{15} \\ 30 \\ \underline{30} \\ 0 \end{array} \quad \begin{array}{r} 97.5 \\ 12 \overline{)1170.0} \\ \underline{12} \\ 90 \\ \underline{60} \\ 30 \\ \underline{30} \\ 0 \end{array}$$

Find the dimensions of each circle based on the given dimension. (not to scale)

#69 Date _____

set: {34, 15, 23, 18, 23}

order: {15, 18, 23, 23, 34}

mean: 22.6 median: 23

mode: 23

set: {46, 19, 9, 42, 19}

order: {9, 19, 19, 42, 46}

mean: 27 median: 19

mode: 19 range: 37

Your soccer coach keeps this chart to track the progress of your team.

Scrambled Legs Spring Season					
(team score us/them)	you	Elie	Fran	Jose	Jerome
Game 1: 8/5	2	2	2	0	2
Game 2: 4/6	0	2	0	2	0
Game 3: 8/7	2	2	2	0	2
Game 4: 12/4	4	2	2	2	0
Game 5: 8/13	2	0	0	4	2

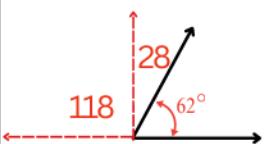
For the first five games:

What was your mean score? 2

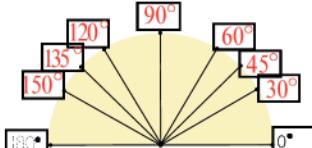
What was Fran's mean score? 1.6

What was your team's mean score? 8

What percent of the games did your team win? 60%


What percent of the games did your team lose? 40%

Which player on your team is the most likely to score points? you


Who on your team is the least likely to score points? Jerome

What is your team's median score? 8

Draw and find the complement and the supplement of this angle.

Fill in each angle measure.

Your scores for the spelling tests are 19, 16, 20, 17, 18, 16 and 20. There were 20 points possible on each test. Find the following:

mean 18 median 18 mode 16, 20 range 4

What is your overall test score in spelling? (Find the MEAN percentage)

$$\text{percent} = \frac{\text{mean} \times 5}{20 \times 5} = \frac{18}{100} \leftarrow \text{percent} \quad 18\%$$

Trace then write each term, then draw a line to match each term to its definition.

average	the middle number when a set of values is arranged from smallest to largest.
chance	the number that appears most frequently.
probability	Also known as the mean, we add all of the addends, then divide the SUM by the number of addends.
median	The distance between the highest and the lowest numbers.
mode	The likelihood that something will happen, stated as a fraction.
range	The likelihood that something will happen, stated as a percentage.

129

What has a *head* and a *tail*, but no body?

A C O I N

Solve using the Order of Operations (PEMDAS).

A $2(6^2 + 4) = 18$

T $5 - 5 \times 3 = -10$

E $3\sqrt{100} \div 5 = 6$

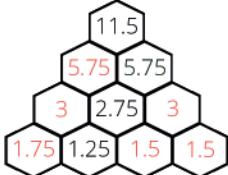
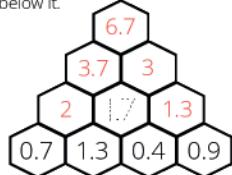
R $4^2 - 4\sqrt{25} = -4$

I $2(5 + 4) \div 3 = 3$

C $2^3 + 4 - 3 \times 6 = -16$

O $\sqrt{49} = 7$

M $8(3 + 4) = 56$



U $8 \times 5 + 4 = 10$

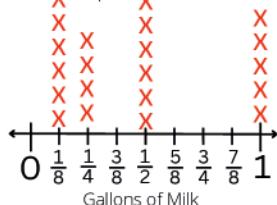
N $\sqrt{36} - 1 = 5$

S $6 \times 4 - 3 \times 9 = -3$

F $5(3 + 3) = 30$

Find the missing numbers in each empty hexagon by adding the two numbers below it.

Write operators ($\times, +, -, \div$) in all of the empty squares to make each number sentence true. Remember to apply the Order of Operations, PEMDAS.


$$\begin{array}{l} 4^2 \div 2 - 3^2 = -1 \\ + \quad \times \quad - \quad \times \\ 2^3 - 7 \times 1 = 1 \\ \times \quad - \quad - \quad - \\ -2 + 9 - 2 = 5 \\ = \quad = \quad = \quad = \\ 0 \times 5 - 6 = -6 \end{array}$$

$$\begin{array}{l} 12 - 3 \times 5 = -3 \\ \times \quad + \quad - \quad + \\ 0 + 2 + 1 = 3 \\ + \quad + \quad \times \quad + \\ 6^2 \div 4 - 5 = 4 \\ = \quad = \quad = \quad = \\ 36 \div 3^2 + 0 = 4 \end{array}$$

131

#70 Date

We are collecting milk for the food bank. Use an X to represent each amount on the line plot.

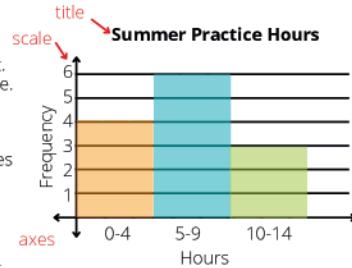
How much milk have you collected?

8 gallons

Histogram

Histograms use bins to display the frequency of numerical values in a data set. The bins are organized into equal, non-overlapping intervals. Since the numerical values show a continuous range, the bins touch.

Step 1: This is how many hours you practiced piano each week all summer. Create a frequency table of these values: 3, 7, 2, 4, 10, 8, 5, 12, 4, 7, 9, 11


Make sure the intervals are equal and don't overlap.

Value	Tally	Frequency
0-4		4
5-9		5
10-14		3

Step 2: Set up your graph. Title it. Label the axes and include a scale.

Draw and color the bins so they represent your frequency chart. The bins touch because the values are continuous.

mean 7 mode X
median 7 range 10
130

#71 Date

1000 residents of your town voted for a new mayor. These are the results. The scale on the y axis is the percentage of voters for each candidate.

How many residents voted for each candidate?

10% of 1000 = $1000 \times 0.10 = 100$

Fox 100

5% of 1000 = $1000 \times 0.05 = 50$

Turner 50

$1000 \times 0.20 = 200$

Martinez 200

$1000 \times 0.35 = 350$

Brown 350

$1000 \times 0.30 = 300$

Owens 300

Candidates

Do the votes for the candidates add up to the total number of voters? Yes

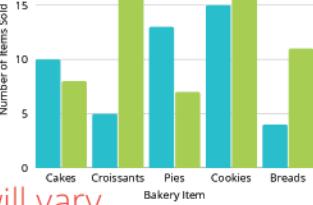
What percent of voters did not vote for Martinez? 80%

Double Bar Graph

Your Grandma owns two bakeries, one in Fairview and one in Pleasanton. She needs your help to figure out which items sell best. You create a graph.

Which item is most popular at Fairview?

cookies

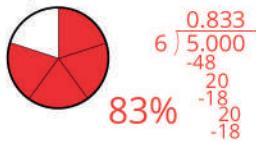

Comparing Sales

Which item is most popular at Pleasanton?

croissants

Number of Items Sold

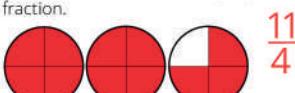
Bakery Item


Which store sold the most items altogether?

Pleasanton

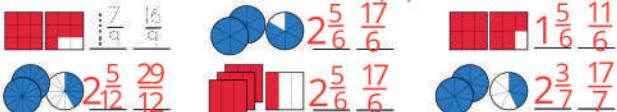
How could this information help a business owner? Answers will vary

132


Draw a circle. Shade all but $\frac{1}{6}$ of it. What percent of the circle is shaded?

Jung Chang wrote a book in 1991 about her experiences during the Chinese Cultural Revolution in 1966. How many years after her experience did she write her story?

1991
-1966
25


Draw and shade circles to show the mixed number $2 \frac{3}{4}$ as an improper fraction.

What time is 25 hours after midnight?

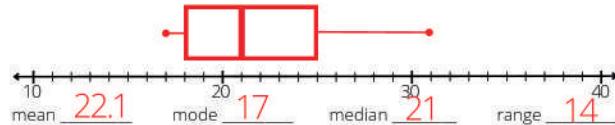
1:00 AM

Name these fractions as mixed numbers and improper fractions.

Find the mean, median, mode and range of each set of game scores.

Scores	Re-order	Mean	Median	Mode	Range
6, 11, 8, 7, 3	3, 6, 7, 8, 11	7	5	3	8
7, 7, 9, 4, 3	3, 4, 7, 7, 9	6	7	7	6
7, 8, 10, 5, 10	5, 7, 8, 10, 10	8	8	10	5
11, 5, 2, 9, 4, 10, 8	2, 4, 5, 8, 9, 10, 11	7	8	8	9
14, 5, 8, 8, 10, 7, 11	5, 7, 8, 8, 10, 11, 14	9	8	8	9

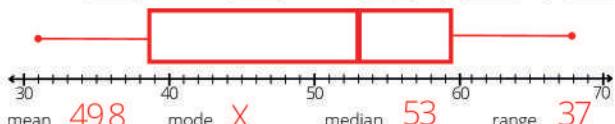
133


#72 Date _____

Create box plots then find the mean, mode, median and range for each data set.

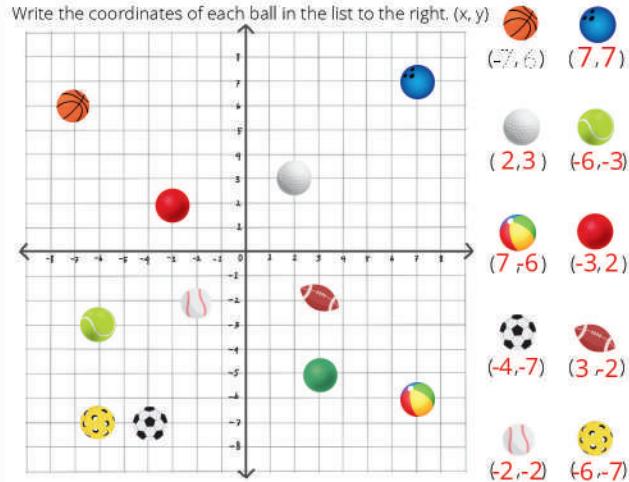
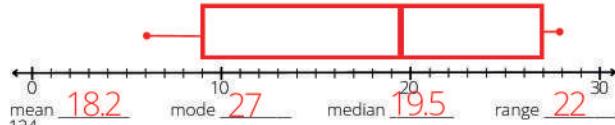
1) 17, 31, 20, 21, 19, 17, 25, 23, 30, 18, 22

Re-order: 17, 17, 18, 19, 20, 21, 22, 23, 25, 30, 31


Maximum 31 Minimum 17 Median 21 Q1 18 Q3 25

2) 68, 31, 63, 55, 39, 47, 45, 53, 60, 38, 32, 59, 58

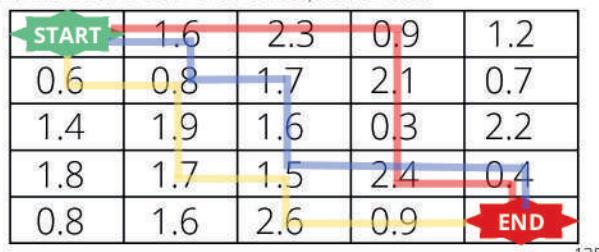
Re-order: 31, 32, 38, 39, 45, 47, 53, 55, 58, 59, 60, 63, 68



Maximum 68 Minimum 31 Median 53 Q1 38.5 Q3 59.5

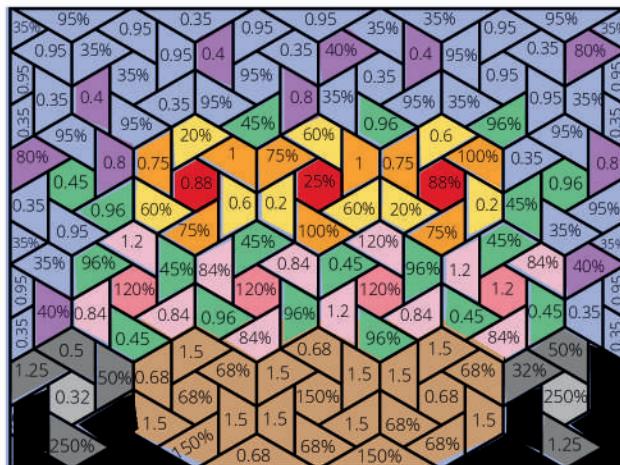
3) 9, 28, 20, 27, 19, 7, 21, 27, 6, 18

Re-order: 6, 7, 9, 18, 19, 20, 21, 27, 27, 28

Maximum 28 Minimum 6 Median 19.5 Q1 9 Q3 27


How many balls are in quadrant IV?

3


Which quadrant has the most balls?

quadrant III

Start the maze with zero. Add the number in each successive space. You must finish with a total of ten. There are three possible routes.

135

Fraction Decimal Percent

22/25 = 0.88 = 88%

21/25 = 0.84 = 84%

3/4 = 0.75 = 75%

3/5 = 0.6 = 60%

9/20 = 0.45 = 45%

19/20 = 0.95 = 95%

2/5 = 0.4 = 40%

1/2 = 0.5 = 50%

17/25 = 0.68 = 68%

8/25 = 0.32 = 32%

Fraction Decimal Percent

1/4 = 0.25 = 25%

12/10 = 1.2 = 120%

4/4 = 1 = 100%

1/5 = 0.2 = 20%

24/25 = 0.96 = 96%

7/20 = 0.35 = 35%

4/5 = 0.8 = 80%

5/2 = 2.5 = 250%

3/2 = 1.5 = 150%

5/4 = 1.25 = 125%

136

Find each product or quotient horizontally, vertically or diagonally.	
9.12 x 10 91.2	7 1 5 2 1 6 4 8 3 9 2
612/180 3.4	2 9 0 2 8 4 8 . 6 . 3
12.3 x 18 221.4	4 0 9 1 . 2 . 3 5 7 .
8.1 x 6 48.6	26.3 x 33.2 873.16
2142/28 76.5	284.52/12 23.71
247/49.4 0.2	13.4 x 7 93.8
2008.6/5.5 365.2	143.5 x 6 861
33.3 x 3 99.9	81.9/13 6.3
25.4/5 5.08	9 4 1 3 1 8 0 5 2 6 7

Find the value of each piece of fruit, then solve each problem.

$$\text{watermelon} + \text{apple} = 7$$

$$\text{apple} - \text{strawberry} = 1$$

$$\text{strawberry} = 8$$

$$\text{apple} \times \text{apple} = 21$$

$$\text{apple}^2 = 36$$

$$\text{apple} = 9$$

$$\text{orange} \times \text{apple} = 27$$

$$\text{orange} \times \text{kiwi} \div \text{banana} = 4$$

$$\text{orange} = 6$$

$$\sqrt{\text{orange} \times \text{apple} + \text{orange}} = 9$$

$$\sqrt{\text{watermelon} - \text{strawberry}} = -6$$

$$\text{watermelon} = 4$$

$$\text{banana} + \text{kiwi} \div \text{apple} = 14$$

$$\text{banana} \times \text{orange} = 108$$

$$\text{banana} = 12$$

$$\text{apple} + \text{kiwi} \times \text{strawberry} = 51$$

$$\text{apple}^3 = 27$$

$$\text{apple} = 3$$

$$\text{banana} \div \text{kiwi} - \text{watermelon} = -2$$

$$\text{banana} \times \text{kiwi} - \text{apple} \times \text{strawberry} = 0$$

$$\text{banana} = 0$$

$$5(\text{banana} \div \text{apple}) = 20$$

$$\text{banana} + \text{kiwi} \times \text{apple} - \text{strawberry} = 14$$

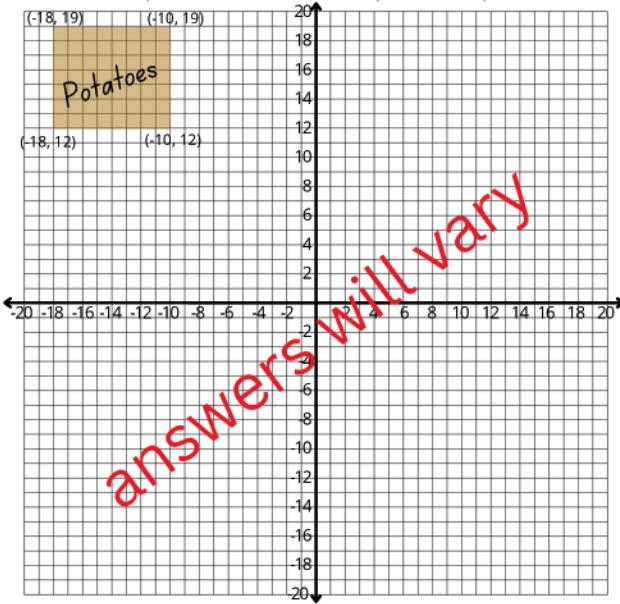
$$\text{banana} = 14$$

137

Each group contains two truths and one lie. Circle the lie in each box.

1) $6 \times 3 = 36/2$	1) $\frac{1}{2} > \frac{1}{4}$	1) $5.8 \text{ m} = 580 \text{ cm}$
2) $12/2 = 2^2$	2) $2 = 6/3$	2) $58 \text{ cm} = 580 \text{ mm}$
3) $2^2 = 36/9$	3) $\frac{3}{4} < \frac{1}{2}$	3) $58 \text{ km} = 58 \text{ m}$
1) $12 \text{ km} = 120 \text{ cm}$	1) $5 \times 12 = 6 \times 10$	1) $8/16 > 6/18$
2) $12 \text{ cm} = 120 \text{ mm}$	2) $8 \times 3+4 = 4+2$	2) $5/15 > 9/16$
3) $1.2 \text{ m} = 120 \text{ cm}$	3) $8^2 = 8+8$	3) $13/15 < 3/5$
1) $1 \frac{1}{4} = 11/4$	1) $24 = 2^3 \times 3$	1) $56/7 = 2 \times 4$
2) $2/4 = 5/10$	2) $28 = 2^2 \times 7$	2) $5 \times 3 = 6+7$
3) $9/8 = 1 \frac{1}{8}$	3) $32 = 2^4$	3) $3(2+4) = 9 \times 2$

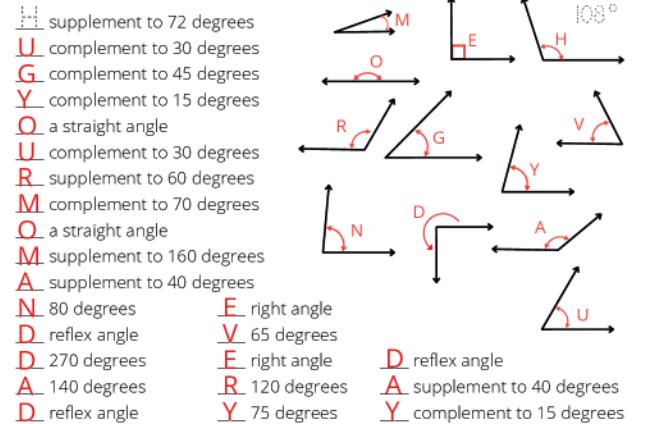
MYSTERY PICTURE


What has a neck but no head?

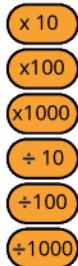
10 5 31.4 5 10 12 9 12 5 78.5 10 31.4 5	3 cm	Perimeter: 12 cm
5 31.4 5 10 78.5 9 12 9 31.4 5 78.5 10 10	5 cm	Area: 9 sq cm
10 78.5 10 31.4 5 12 9 12 10 31.4 5 5 10	5 cm	Perimeter: 16 cm
5 31.4 5 10 78.5 16 15 16 5 78.5 10 31.4 5	3 cm	Area: 15 sq cm
78.5 5 31.4 5 10 15 16 15 78.5 10 31.4 5 78.5	10 cm	Radius: 5 cm Diameter: 10 cm Perimeter: 31.4 cm Area: 78.5 sq cm
5 31.4 5 10 78.5 16 15 16 5 78.5 10 31.4 5	45°	Perimeter: 17 cm
10 78.5 10 31.4 16 15 16 15 16 31.4 5 5 10	7 cm	Area: 13.5 sq cm
31.4 5 10 15 16 15 16 15 16 15 31.4 5 10 78.5	5 cm	
5 31.4 15 16 15 16 15 16 15 16 31.4 5 10 78.5	5 cm	
10 78.5 17 135 17 135 17 135 17 135 17 10 5	45°	
31.4 5 135 17 135 17 135 17 135 17 135 5 78.5	7 cm	
10 78.5 10 135 17 135 17 135 17 135 17 5 5 10	45°	
31.4 5 10 78.5 17 135 17 135 17 5 31.4 10 78.5	5 cm	

Use this grid paper to plan your garden. Draw a rectangular space for each crop, the area specified, then label each corner with an ordered pair (x, y).

Potatoes 56 sq. units
Carrots 18 sq. units
Beets 36 sq. units
Lettuce 24 sq. units
Beans 60 sq. units


Flowers 72 sq. units
Tomatoes 48 sq. units
Squash 36 sq. units
Onions 15 sq. units
Spinach 30 sq. units

Divide the plot for flowers in half diagonally. Plant one triangle with daisies and one triangle with mums. How much area is each?


Divide the plot for squash in half diagonally. Plant one triangle with pumpkins and the other with zucchini. How much area is each?

Use your protractor to find the measure of each angle and label it. Use the clues below to get some really great advice.

Fill in each blank with one of these multipliers or divisors to make each equation true.

312 <u>/1000</u> = 0.312	541 <u>/10</u> = 54.1
2.4 <u>x100</u> = 240	17 <u>/100</u> = 0.17
0.67 <u>x1000</u> = 670	3.5 <u>x1000</u> = 3500
83 <u>/10</u> = 8.3	12 <u>/1000</u> = 0.012
11.4 <u>x10</u> = 114	75 <u>/100</u> = 0.75
2.91 <u>x100</u> = 291	75 <u>x10</u> = 750
15 <u>x1000</u> = 15000	75 <u>/10</u> = 7.5
0.15 <u>x1000</u> = 150	75 <u>x100</u> = 7500
940 <u>/10</u> = 94	99 <u>/100</u> = 0.99
708 <u>/100</u> = 7.08	99 <u>/10</u> = 9.9

